Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1389071, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860139

RESUMO

A developing use of nanotechnology in medicine involves using nanoparticles to administer drugs, genes, biologicals, or other materials to targeted cell types, such as cancer cells. In healthcare, nanotechnology has brought about revolutionary changes in the treatment of various medical and surgical conditions, including in orthopedic. Its clinical applications in surgery range from developing surgical instruments and suture materials to enhancing imaging techniques, targeted drug delivery, visualization methods, and wound healing procedures. Notably, nanotechnology plays a significant role in preventing, diagnosing, and treating orthopedic disorders, which is crucial for patients' functional rehabilitation. The integration of nanotechnology improves standards of patient care, fuels research endeavors, facilitates clinical trials, and eventually improves the patient's quality of life. Looking ahead, nanotechnology holds promise for achieving sustained success in numerous surgical disciplines, including orthopedic surgery, in the years to come. This review aims to focus on the application of nanotechnology in orthopedic surgery, highlighting the recent development and future perspective to bridge the bridge for clinical translation.

2.
J Ethnopharmacol ; 328: 117956, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38428658

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chinese herbal medicine Gegen Qinlian Decoction (GQD) has been clinically shown to be an effective treatment of ulcerative colitis (UC) in China. However, the underlying mechanism of GQD's anti-ulcerative colitis properties and its effect on gut microbiota still deserve further exploration. AIM OF THE STUDY: This study observed the regulatory effects of GQD on Th2/Th1 and Tregs/Th17 cells balance, the NOD-like receptor family pyrin domain containing 3 (NLRP3) infammasome and gut microbiota in TNBS-induced UC in BALB/c mice. MATERIALS AND METHODS: 61 main chemical compounds in the GQD were determined by UPLC-Q-TOF/MS. The UC BALB/c model was established by intrarectal administration of trinitrobenzene sulfonic acid (TNBS), and GQD was orally administered at low and high dosages of 2.96 and 11.83 g/kg/day, respectively. The anti-inflammatory effects of GQD for ulcerative colitis were evaluated by survival rate, body weight, disease activity index (DAI) score, colonic weight and index, spleen index, hematoxylin-eosin (HE) staining and histopathological scores. Flow cytometry was used to detect the percentage of CD4, Th1, Th2, Th17 and Tregs cells. The levels of Th1-/Th2-/Th17-/Tregs-related inflammatory cytokines and additional proinflammatory cytokines (IL-1ß, IL-18) were detected by CBA, ELISA, and RT-PCR. The expressions of GATA3, T-bet, NLRP3, Caspase-1, IL-Iß, Occludin and Zonula occludens-1 (ZO-1) on colon tissues were detected by Western blot and RT-PCR. Transcriptome sequencing was performed using colon tissue and 16S rRNA gene sequencing was performed on intestinal contents. Fecal microbiota transplantation (FMT) was employed to assess the contribution of intestinal microbiota and its correlation with CD4 T cells and the NLRP3 inflammasome. RESULTS: GQD increased the survival rate of TNBS-induced UC in BALB/c mice, and significantly improved their body weight, DAI score, colonic weight and index, spleen index, and histological characteristics. The intestinal barrier dysfunction was repaired after GQD administration through promoting the expression of tight junction proteins (Occludin and ZO-1). GQD restored the balance of Th2/Th1 and Tregs/Th17 cells immune response of colitis mice, primarily inhibiting the increase in Th2/Th1 ratio and their transcription factor production (GATA3 and T-bet). Morever, GQD changed the secretion of Th1-/Th2-/Th17-/Tregs-related cytokines (IL-2, IL-12, IL-5, IL-13, IL-6, IL-10, and IL-17A) and reduced the expressions of IL-1ß, IL-18. Transcriptome results suggested that GQD could also remodel the immune inflammatory response of colitis by inhibiting NOD-like receptor signaling pathway, and Western blot, immunohistochemistry and RT-PCR further revealed that GQD exerted anti-inflammatory effects by inhibiting the NLRP3 inflammasome, such as down-regulating the expression of NLRP3, Caspase-1 and IL-1ß. More interestingly, GQD regulated gut microbiota dysbiosis, suppressed the overgrowth of conditional pathogenic gut bacteria like Helicobacter, Proteobacteria, and Mucispirillum, while the probiotic gut microbiota, such as Lactobacillus, Muribaculaceae, Ruminiclostridium_6, Akkermansia, and Ruminococcaceae_unclassified were increased. We further confirmed that GQD-treated gut microbiota was sufficient to relieve TNBS-induced colitis by FMT, involving the modulation of Th2/Th1 and Tregs/Th17 balance, inhibition of NLRP3 inflammasome activation, and enhancement of colonic barrier function. CONCLUSIONS: GQD might alleviate TNBS-induced UC via regulating Th2/Th1 and Tregs/Th17 cells Balance, inhibiting NLRP3 inflammasome and reshaping gut microbiota, which may provide a novel strategy for patients with colitis.


Assuntos
Colite Ulcerativa , Colite , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/efeitos adversos , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-18/farmacologia , Interleucina-18/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Th17 , Ocludina/metabolismo , RNA Ribossômico 16S/metabolismo , Camundongos Endogâmicos CBA , Colite/tratamento farmacológico , Citocinas/metabolismo , Trinitrobenzenos/metabolismo , Trinitrobenzenos/farmacologia , Trinitrobenzenos/uso terapêutico , Anti-Inflamatórios/farmacologia , Peso Corporal , Caspases/metabolismo , Modelos Animais de Doenças , Colo
3.
Front Bioeng Biotechnol ; 12: 1292171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38282892

RESUMO

Globally, an annual count of more than two million bone transplants is conducted, with conventional treatments, including metallic implants and bone grafts, exhibiting certain limitations. In recent years, there have been significant advancements in the field of bone regeneration. Oxygen tension regulates cellular behavior, which in turn affects tissue regeneration through metabolic programming. Biomaterials with oxygen release capabilities enhance therapeutic effectiveness and reduce tissue damage from hypoxia. However, precise control over oxygen release is a significant technical challenge, despite its potential to support cellular viability and differentiation. The matrices often used to repair large-size bone defects do not supply enough oxygen to the stem cells being used in the regeneration process. Hypoxia-induced necrosis primarily occurs in the central regions of large matrices due to inadequate provision of oxygen and nutrients by the surrounding vasculature of the host tissues. Oxygen generating biomaterials (OGBs) are becoming increasingly significant in enhancing our capacity to facilitate the bone regeneration, thereby addressing the challenges posed by hypoxia or inadequate vascularization. Herein, we discussed the key role of oxygen in bone regeneration, various oxygen source materials and their mechanism of oxygen release, the fabrication techniques employed for oxygen-releasing matrices, and novel emerging approaches for oxygen delivery that hold promise for their potential application in the field of bone regeneration.

4.
Nanomedicine (Lond) ; 19(3): 255-275, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38275154

RESUMO

Nanotechnology has revolutionized the field of bone regeneration, offering innovative solutions to address the challenges associated with conventional therapies. This comprehensive review explores the diverse landscape of nanomaterials - including nanoparticles, nanocomposites and nanofibers - tailored for bone tissue engineering. We delve into the intricate design principles, structural mimicry of native bone and the crucial role of biomaterial selection, encompassing bioceramics, polymers, metals and their hybrids. Furthermore, we analyze the interface between cells and nanostructured materials and their pivotal role in engineering and regenerating bone tissue. In the concluding outlook, we highlight emerging frontiers and potential research directions in harnessing nanomaterials for bone regeneration.


Assuntos
Nanocompostos , Nanotecnologia , Materiais Biocompatíveis/uso terapêutico , Materiais Biocompatíveis/química , Regeneração Óssea , Nanocompostos/uso terapêutico , Nanocompostos/química , Engenharia Tecidual
5.
Phytomedicine ; 114: 154787, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060724

RESUMO

BACKGROUND: Panax notoginseng saponins (PNS), the main active component of Panax notoginseng, can promote vascular microcirculation. PNS exhibits antitumor effects in various cancers. However, the molecular basis of the relationship between PNS and tumor blood vessels remains unclear. PURPOSE: To study the relationship between PNS inhibiting the growth and metastasis of breast cancer and promoting the normalization of blood vessels. METHODS: We performed laser speckle imaging of tumor microvessels and observed the effects of PNS on tumor growth and metastasis of MMTV-PyMT (FVB) spontaneous breast cancer in a transgenic mouse model. Immunohistochemical staining of Ki67 and CD31 was performed for tumors, scanning electron microscopy was used to observe tumor vascular morphology, and flow cytometry was used to detect tumor tissue immune microenvironment (TME). RNA-seq analysis was performed using the main vessels of the tumor tissues of the mice. HUVECs were cultured in tumor supernatant in vitro to simulate tumor microenvironment and verify the sequencing differential key genes. RESULTS: After treatment with PNS, we observed that tumor growth was suppressed, the blood perfusion of the systemic tumor microvessels in the mice increased, and the number of lung metastases decreased. Moreover, the vascular density of the primary tumor increased, and the vascular epidermis was smoother and flatter. Moreover, the number of tumor-associated macrophages in the tumor microenvironment was reduced, and the expression levels of IL-6, IL-10, and TNF-α were reduced in the tumor tissues. PNS downregulated the expression of multiple genes associated with tumor angiogenesis, migration, and adhesion. In vitro tubule formation experiments revealed that PNS promoted the formation and connection of tumor blood vessels and normalized the vessel morphology primarily by inhibiting EphA2 expression. In addition, PNS inhibited the expression of tumor vascular marker proteins and vascular migration adhesion-related proteins in vivo. CONCLUSION: In this study, we found that PNS promoted the generation and connection of tumor vascular endothelial cells, revealing the key role of EphA2 in endothelial cell adhesion and tumor blood vessel morphology. PNS can inhibit the proliferation and metastasis of breast cancer by inhibiting EphA2, improving the immune microenvironment of breast cancer and promoting the normalization of tumor blood vessels.


Assuntos
Neoplasias , Panax notoginseng , Saponinas , Animais , Camundongos , Células Endoteliais , Expressão Gênica , Neoplasias/tratamento farmacológico , Panax notoginseng/química , Saponinas/farmacologia , Microambiente Tumoral , Receptor EphA2/metabolismo
6.
Front Pharmacol ; 13: 918975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935838

RESUMO

Background: Smilax glabra Roxb. (SGR) is a widely used traditional Chinese medicine, which has known effects of enhancing immunity. However, its anti-tumor effects and mechanism of action are still unclear. Methods: We selected MMTV-PyMT mice to determine the anti-tumor efficacy of SGR ethyl acetate (SGR-EA). First, flow cytometry was used to detect the number of immune cells in the mice tumor microenvironment. Furthermore, M2 polarization of macrophages was stimulated in vitro, and the expressions of macrophage M1/M2 surface markers and mRNA were as determined. Finally, we carried out a network pharmacology analysis on the active components of SGR-EA and in vitro experiments to verify that SGR-EA regulated the hypoxia-inducible factor (HIF)-1 signaling pathway to modulate the anti-tumor immune response by resetting M2 macrophages toward the M1 phenotype which inhibited tumor growth and lung metastasis in the mice. Result: SGR-EA inhibited tumor growth and lung metastasis in the mice. Tumor-associated macrophages switched from M2 to the tumor-killing M1 phenotype and promoted the recruitment of CD4+ and CD8+ T cells in the tumor microenvironment. In vitro, SGR-EA significantly inhibited the polarization of macrophages into M2 macrophages and increased the number of M1 macrophages. In addition, following an intervention with SGR-EA, the expression of the HIF-1 signaling pathway-related proteins stimulated by interleukin-4 in macrophages was significantly inhibited. Conclusion: SGR-EA played an anti-tumor role by inhibiting the activation of the HIF-1 signaling pathway and response by resetting tumor-associated macrophages toward the M1 phenotype.

7.
J Immunol Res ; 2022: 7222638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711625

RESUMO

Blood stasis syndromes (BSSs) are closely related to the occurrence and development of tumors, although the mechanism is still unclear. This study was aimed at exploring the effect and mechanism underlying different BSSs on tumor growth and metastasis. We established four BSS mouse models bred with breast cancer: qi deficiency and blood stasis (QDBS), cold coagulation blood stasis (CCBS), heat toxin and blood stasis (HTBS), and qi stagnation and blood stasis (QSBS). The results showed that microcirculation in the lower limb, abdominal wall, and tumor in situ decreased by varying degrees in the BSS groups. In addition, BSS promoted tumor growth and lung metastasis. The ratio of regulatory T cells in the tumor microenvironment was downregulated. Moreover, hypoxia-inducible factor 1-α, Wnt1, ß-catenin, vascular endothelial growth factor, and Cyclin D1 levels increased in the tumors of BSS mice. In conclusion, BSS not only promoted the formation of a hypoxic and immunosuppressive microenvironment but also promoted the neovascularization.


Assuntos
Neoplasias Pulmonares , Medicina Tradicional Chinesa , Animais , Coagulação Sanguínea , Hipóxia , Medicina Tradicional Chinesa/métodos , Camundongos , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular
10.
Curr Med Chem ; 27(40): 6787-6814, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31580244

RESUMO

Due to the three domains of the colchicine-site which is conducive to the combination with small molecule compounds, colchicine-site on the tubulin has become a common target for antitumor drug development, and accordingly, a large number of tubulin inhibitors binding to the colchicine-site have been reported and evaluated over the past years. In this study, tubulin inhibitors targeting the colchicine-site and their application as antitumor agents were reviewed based on the literature from 2015 to 2019. Tubulin inhibitors were classified into ten categories according to the structural features, including colchicine derivatives, CA-4 analogs, chalcone analogs, coumarin analogs, indole hybrids, quinoline and quinazoline analogs, lignan and podophyllotoxin derivatives, phenothiazine analogs, N-heterocycle hybrids and others. Most of them displayed potent antitumor activity, including antiproliferative effects against Multi-Drug-Resistant (MDR) cell lines and antivascular properties, both in vitro and in vivo. In this review, the design, synthesis and the analysis of the structure-activity relationship of tubulin inhibitors targeting the colchicine-site were described in detail. In addition, multi-target inhibitors, anti-MDR compounds, and inhibitors bearing antitumor activity in vivo are further listed in tables to present a clear picture of potent tubulin inhibitors, which could be beneficial for medicinal chemistry researchers.


Assuntos
Moduladores de Tubulina/química , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Colchicina , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico
11.
Bioorg Chem ; 92: 103219, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31476616

RESUMO

Twenty-four 1,2-diarylbenzimidazole derivatives were designed, synthesized and biologically evaluated. It turned out that most of them were potential anticancer drugs. Among them, compound c24 showed the highest anti-tumor activity (GI50 = 0.71-2.41 µM against HeLa, HepG2, A549 and MCF-7 cells), and low toxicity to normal cells (CC50 > 100 µM against L02 cells). In the microtubule binding assay, c24 showed the most potent inhibition of microtubule polymerization (IC50 = 8.47 µM). The binding ability of compound c24 to tubulin crystal was verified by molecular docking simulation experiment. Further studies on HepG2 and HeLa cells showed that compound c24 could cause mitotic arrest of tumor cells to G2/M phase then inducing apoptosis. To sum up, compound c24 is a promising microtubule assembly inhibitor.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Simulação de Acoplamento Molecular , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzimidazóis/síntese química , Benzimidazóis/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Polimerização/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
12.
J Biol Eng ; 13: 49, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164920

RESUMO

BACKGROUND: Myocardial infarction (MI) is a common cause of mortality in people. Mesenchymal stem cell (MSC) has been shown to exert therapeutic potential to treat myocardial infarction (MI). However, in patients with diabetes, the diabetic environment affected MSCs activity and could impair the efficacy of treatment. Interleukin-10 (IL-10) has been shown to attenuate MI by suppressing inflammation. In current study, the combination of MSC transplantation with IL-10 was evaluated in a diabetic mice model with MI. METHODS: We engineered bone marrow derived MSCs (BM-MSCs) to overexpress IL-10 by using CRISPR activation. We established the diabetic mice model with MI and monitored the IL-10 expression after BM-MSCs transplantation. We also evaluated the effects of BM-MSCs transplantation on inflammatory response, cell apoptosis, cardiac function and angiogenesis. RESULTS: CRISPR activation system enabled overexpression of IL-10 in BM-MSCs. Transplantation of BM-MSCs overexpressing IL-10 resulted in IL-10 expression in heart after transplantation. Transplantation of BM-MSCs overexpressing IL-10 inhibited inflammatory cell infiltration and pro-inflammatory cytokines production, improved cardiac functional recovery, alleviated cardiac injury, decreased apoptosis of cardiac cells and increased angiogenesis. CONCLUSION: In summary, we have demonstrated the therapeutic potential of IL-10 overexpressed BM-MSCs in the treatment of MI in diabetic mice.

13.
Chem Biol Drug Des ; 94(5): 1894-1904, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31106514

RESUMO

Several novel cycloalkyl-fused 2,3-diaryl pyrazole derivatives were designed, synthesized, and evaluated as potential anti-tubulin agents. Compound A10 exhibited the most potent antiproliferative activity against a panel of cancer lines (IC50  = 0.78-2.42 µM) and low cytotoxicity against 293T & L02 (CC50 values of 131.74 and 174.89 µM, respectively). Moreover, A10 displayed inhibition of tubulin polymerization in vitro, arrested the G2/M phase of the cell cycle, changed morphology of tubulin, increased intracellular reactive oxygen species, and induced apoptosis of HeLa cells. Docking simulation and 3D-QSAR models were performed to elaborate on the anti-tubulin mechanism of the derivatives. The inhibition of monoclonal colony formation provided more intuitional data to verify the possibility of A10 as a novel tubulin assembling inhibitor.


Assuntos
Antineoplásicos/síntese química , Hidrocarbonetos Cíclicos/síntese química , Hidrocarbonetos Cíclicos/metabolismo , Pirazóis/síntese química , Moduladores de Tubulina/síntese química , Tubulina (Proteína)/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidrocarbonetos Cíclicos/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Pirazóis/farmacologia , Relação Quantitativa Estrutura-Atividade , Espécies Reativas de Oxigênio/metabolismo , Moduladores de Tubulina/farmacologia
15.
Eur J Med Chem ; 163: 896-910, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30580241

RESUMO

In current work, a class of novel 4,5-dihydro-1H-pyrazole-1-carboxylate derivatives (E01-E28) were designed, synthesized and evaluated. Among them, the most potent compound E24 exhibited comparable activity against a panel of cancer cells (GI50 ranging 0.05-0.98 µM) and tubulin polymerization inhibition (IC50 = 1.49 µM) with reference drug CA-4(P) (GI50 ranging 0.019-0.32 µM, IC50 = 2.18 µM). The following assays indicated that compound E24 disturbed the dynamics of tubulin catastrophe and rescue, which triggered G2/M arrest, leading to ROS accumulation, cleavage of PARP and apoptosis. Molecular dynamics simulation validated that compound E24 could tightly bind into tubulin heterodimers with ß Lys 254 and ß Cys 241 of tubulin in the docking pose. Metabolic stability and pharmacokinetics parameters were also determined. The half time (t1/2) displayed species differences in three microsomes. The plasma elimination half-life (t1/2), peak plasma concentration (Cmax), mean retention time (MRT), the area under the curve (AUC0-∞) and distribution volume (Vz) of E24 after intravenous administration were 0.90 ± 0.22 h, 594.50 ± 97.23 ng/mL, 1.09 ± 0.22 h, 413.67 ± 105.64 ng/mL*h and 5.03 ± 1.82 L/kg, respectively. In HeLa-xenografts, compound E24 exhibited obvious antitumor efficacy via the suppression of tumor growth without weight loss of body or organ. In brief, compound E24 might be a hopeful candidate with excellent properties for oncotherapy as tubulin polymerization inhibitor.


Assuntos
Antineoplásicos/síntese química , Polimerização/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Xenoenxertos , Humanos , Camundongos , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntese química
16.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1556-1567, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28216285

RESUMO

It has been well documented that hypoadiponectinemia is associated with impaired endothelium-dependent vasodilation. However, the exact molecular mechanism which mediates this process has not been fully described. The current study aimed to investigate the role of hypoadiponectinemia-induced NLRP3 inflammasome activation in diabetic vascular endothelial dysfunction and its molecular mechanism. Male adult adiponectin knockout mice and wild type mice were fed with a high fat diet to establish a type 2 diabetic mellitus model. In addition, human umbilical vein endothelial cells (HUVECs) were cultured and subjected to high glucose/high fat (HG/HF). The NLRP3 inflammasome activation was increased in type 2 diabetic mice and treatment of diabetic aortic segments with MCC950, a potent selective inhibitor of NLRP3 inflammasome ex vivo improved endothelial-dependent vasorelaxation. NLRP3 inflammasome activation and vascular endothelial injury were significantly increased in APN-KO mice compared with WT mice in diabetes and MCC950 decreased diabetic vascular endothelial dysfunction to comparable levels in APN-KO mice and WT mice. Adiponectin could decrease NLRP3 inflammasome activation and attenuate endothelial cell injury, which was abolished by NLRP3 inflammasome overexpression. Inhibition of peroxynitrite formation preferentially attenuated NLRP3 inflammasome activation in APN-KO diabetic mice. The current study demonstrated for the first time that hypoadiponectinemia-induced NLRP3 inflammasome activation was a novel mechanism of diabetic vascular endothelial dysfunction.


Assuntos
Adiponectina/deficiência , Angiopatias Diabéticas/metabolismo , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamassomos/metabolismo , Erros Inatos do Metabolismo/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/patologia , Endotélio Vascular/patologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Inflamassomos/genética , Masculino , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/patologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Vasodilatação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...