Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Sci Rep ; 14(1): 16564, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019887

RESUMO

Bitter gourd is an economically important horticultural crop for its edible and medicinal value. However, the regulatory mechanisms of bitter gourd in response to cold stress are still poorly elucidated. In this study, phytohormone determination and comparative transcriptome analyses in XY (cold-tolerant) and QF (cold-sensitive) after low temperature treatment were conducted. Under cold stress, the endogenous contents of abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) in XY were significantly increased at 24 h after treatment (HAT), indicating that ABA, JA and SA might function in regulating cold resistance. RNA-seq results revealed that more differentially expressed genes were identified at 6 HAT in QF and 24 HAT in XY, respectively. KEGG analysis suggested that the plant hormone signal transduction pathway was significantly enriched in both genotypes at all the time points. In addition, transcription factors showing different expression patterns between XY and QF were identified, including CBF3, ERF2, NAC90, WRKY51 and WRKY70. Weighted gene co-expression network analysis suggested MARK1, ERF17, UGT74E2, GH3.1 and PPR as hub genes. These results will deepen the understanding of molecular mechanism of bitter gourd in response to cold stress and the identified genes may help to facilitate the genetic improvement of cold-resistant cultivars.


Assuntos
Resposta ao Choque Frio , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Momordica charantia , Reguladores de Crescimento de Plantas , Momordica charantia/genética , Momordica charantia/metabolismo , Resposta ao Choque Frio/genética , Perfilação da Expressão Gênica/métodos , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Ácido Abscísico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ciclopentanos/metabolismo
2.
Am J Clin Nutr ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950778

RESUMO

BACKGROUND: The influence of adherence to a planetary health diet (PHD) proposed by the EAT-Lancet Commission on cardiovascular disease (CVD) is inconclusive. Besides, whether genetic susceptibility to CVD can modify the association of PHD with CVD remains unknown. OBJECTIVE: We aimed to investigate the association between adherence to PHD and CVD, and to evaluate the interaction between PHD and genetic predisposition to CVD. METHODS: This study included 114,165 participants who completed at least two 24-h dietary recalls and were initially free of CVD from the UK Biobank. PHD score was calculated to assess adherence to PHD. Genetic risk was evaluated using the polygenic risk score. Incidence of total CVD, ischemic heart disease (IHD), atrial fibrillation (AF), heart failure (HF), and stroke were identified via electronic health records. Cox proportional hazard regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS: During a median follow-up of 9.9 y, 10,071 (8.8%) incident CVD cases were documented. Compared with participants with the lowest adherence to PHD, HRs (95% CIs) for total CVD, IHD, AF, HF, and stroke among those with the highest adherence were 0.79 (0.74, 0.84), 0.73 (0.67, 0.79), 0.90 (0.82, 0.99), 0.69 (0.59, 0.82), and 0.88 (0.75, 1.04), respectively. No significant interaction between the genetic risk of CVD and PHD was observed. Participants with high genetic risk and low PHD score, as compared with those with low genetic risk and high PHD score, had a 48% (95% CI: 40%, 56%) higher risk of CVD. The population-attributable risk (95% CI) of CVD for poor adherence to PHD ranged from 8.79% (5.36%, 12.51%) to 14.00% (9.00%, 18.88%). CONCLUSIONS: These findings suggest that higher adherence to PHD was associated with lower risk of total CVD, IHD, AF, and HF in populations across all genetic risk categories.

3.
Appl Environ Microbiol ; : e0089024, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940564

RESUMO

Biological valorization of lignin, the second most abundant biopolymer on Earth, is an indispensable sector to build a circular economy and net-zero future. However, lignin is recalcitrant to bioupcycling, demanding innovative solutions. We report here the biological valorization of lignin-derived aromatic carbon to value-added chemicals without requesting extra organic carbon and freshwater via reprogramming the marine Roseobacter clade bacterium Roseovarius nubinhibens. We discovered the unusual advantages of this strain for the oxidation of lignin monomers and implemented a CRISPR interference (CRISPRi) system with the lacI-Ptrc inducible module, nuclease-deactivated Cas9, and programmable gRNAs. This is the first CRISPR-based regulatory system in R. nubinhibens, enabling precise and efficient repression of genes of interest. By deploying the customized CRISPRi, we reprogrammed the carbon flux from a lignin monomer, 4-hydroxybenzoate, to achieve the maximum production of protocatechuate, a pharmaceutical compound with antibacterial, antioxidant, and anticancer properties, with minimal carbon to maintain cell growth and drive biocatalysis. As a result, we achieved a 4.89-fold increase in protocatechuate yield with a dual-targeting CRISPRi system, and the system was demonstrated with real seawater. Our work underscores the power of CRISPRi in exploiting novel microbial chassis and will accelerate the development of marine synthetic biology. Meanwhile, the introduction of a new-to-the-field lineage of marine bacteria unveils the potential of blue biotechnology leveraging resources from the ocean.IMPORTANCEOne often overlooked sector in carbon-conservative biotechnology is the water resource that sustains these enabling technologies. Similar to the "food-versus-fuel" debate, the competition of freshwater between human demands and bioproduction is another controversial issue, especially under global water scarcity. Here, we bring a new-to-the-field lineage of marine bacteria with unusual advantages to the stage of engineering biology for simultaneous carbon and water conservation. We report the valorization of lignin monomers to pharmaceutical compounds without requesting extra organic substrate (e.g., glucose) or freshwater by reprogramming the marine bacterium Roseovarius nubinhibens with a multiplex CRISPR interference system. Beyond the blue lignin valorization, we present a proof-of-principle of leveraging marine bacteria and engineering biology for a sustainable future.

4.
Mol Nutr Food Res ; 68(9): e2300314, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38639304

RESUMO

SCOPE: Among patients with diabetes, who have modified nutritional behavior and a higher risk of cardiovascular disease (CVD), the influence of ultraprocessed foods (UPFs) on CVD remains unknown. The study aims to evaluate the association between UPF intake and the risk of CVD among individuals with type 2 diabetes (T2D) and further examine the potential biological pathways linking the association. METHODS AND RESULTS: This study includes 5405 participants with T2D who provided at least one 24-h dietary recall from the UK Biobank study. In the fully adjusted models, a 10% increase in the proportion of UPFs is associated with higher hazards of overall CVD (hazard ratio [HR]: 1.10; 95% confidence interval [CI]: 1.04, 1.15), coronary heart disease (HR: 1.10; 95% CI: 1.04, 1.16), heart failure (HR: 1.14; 95% CI: 1.05, 1.25), but not stroke (HR: 1.01; 95% CI: 0.90, 1.12). Cystatin C, high-density lipoprotein cholesterol (HDL-C), apolipoprotein A, C-reactive protein, and body mass index collectively explain 26.9% (12.8%, 48.5%) of the association between UPF intake and the risk of overall CVD. CONCLUSION: Higher UPF intakes are associated with increased hazards of CVD among individuals with T2D, and the association is partly mediated through worsening biomarkers of renal function, lipid metabolism, inflammation, and body weight.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Alimento Processado , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Dieta , Manipulação de Alimentos , Fatores de Risco , Biobanco do Reino Unido , Reino Unido/epidemiologia
5.
Org Lett ; 26(10): 2073-2078, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38446422

RESUMO

A visible-light-induced radical alkylarylation of N-aryl bicyclobutyl amides with α-carbonyl alkyl bromides for the synthesis of functionalized 3-spirocyclobutyl oxindoles is described in which ß-selective radical addition of the alkyl radical to N-aryl bicyclobutyl amides forms a key radical intermediate followed by interception with intrinsic arene functional group. This approach can be applicable to a wide range of α-carbonyl alkyl bromides, including primary, secondary, and tertiary α-bromoalkyl esters, ketones, nitriles, and nitro compounds.

6.
J Colloid Interface Sci ; 665: 500-509, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38547631

RESUMO

Constructing a heterojunction by combining two semiconductors with similar band structures is a successful approach to obtaining photocatalysts with high efficiency. Herein, a CuPc/DR-MoS2 heterojunction involving copper phthalocyanine (CuPc) and molybdenum disulfide with S-rich vacancies (13.66%) is successfully prepared by the facile hydrothermal method. Experimental results and theoretical calculations firmly demonstrated that photoelectrons exhibit an S-scheme charge transfer mechanism in the CuPc/DR-MoS2 heterojunction. The S-scheme heterojunction system has proven significant advantages in promoting the charge separation and transfer of photogenerated carriers, enhancing visible-light responsiveness, and achieving robust photoredox capability. As a result, the optimized 3CuPc/DR-MoS2 S-scheme heterojunction exhibits photocatalytic yields of CO and CH4 at 200 and 111.6 µmol g-1h-1, respectively. These values are four times and 4.5 times greater than the photocatalytic yields of pure DR-MoS2. This study offers novel perspectives on the advancement of innovative and highly effective heterojunction photocatalysts.

7.
Proc Natl Acad Sci U S A ; 121(4): e2317058121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232281

RESUMO

Integration of methanogenic archaea with photocatalysts presents a sustainable solution for solar-driven methanogenesis. However, maximizing CH4 conversion efficiency remains challenging due to the intrinsic energy conservation and strictly restricted substrates of methanogenic archaea. Here, we report a solar-driven biotic-abiotic hybrid (biohybrid) system by incorporating cadmium sulfide (CdS) nanoparticles with a rationally designed methanogenic archaeon Methanosarcina acetivorans C2A, in which the glucose synergist protein and glucose kinase, an energy-efficient route for glucose transport and phosphorylation from Zymomonas mobilis, were implemented to facilitate nonnative substrate glucose for methanogenesis. We demonstrate that the photo-excited electrons facilitate membrane-bound electron transport chain, thereby augmenting the Na+ and H+ ion gradients across membrane to enhance adenosine triphosphate (ATP) synthesis. Additionally, this biohybrid system promotes the metabolism of pyruvate to acetyl coenzyme A (AcCoA) and inhibits the flow of AcCoA to the tricarboxylic acid (TCA) cycle, resulting in a 1.26-fold augmentation in CH4 production from glucose-derived carbon. Our results provide a unique strategy for enhancing methanogenesis through rational biohybrid design and reprogramming, which gives a promising avenue for sustainably manufacturing value-added chemicals.


Assuntos
Trifosfato de Adenosina , Metano , Metano/metabolismo , Transporte de Elétrons , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Transporte Biológico , Methanosarcina/metabolismo
8.
Nanoscale ; 16(9): 4352-4377, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38275275

RESUMO

Semiconductor-based photocatalysis has attracted significant interest due to its capacity to directly exploit solar energy and generate solar fuels, including water splitting, CO2 reduction, pollutant degradation, and bacterial inactivation. However, achieving the maximum efficiency in photocatalytic processes remains a challenge owing to the speedy recombination of electron-hole pairs and the limited use of light. Therefore, significant endeavours have been devoted to addressing these issues. Specifically, well-designed heterojunction photocatalysts have been demonstrated to exhibit enhanced photocatalytic activity through the physical distancing of electron-hole pairs generated during the photocatalytic process. In this review, we provide a systematic discussion ranging from fundamental mechanisms to material strategies, focusing on TiO2-based heterojunction photocatalysts. Current efforts are focused on developing heterojunction photocatalysts based on TiO2 for a variety of photocatalytic applications, and these projects are explained and assessed. Finally, we offer a concise summary of the main insights and challenges in the utilization of TiO2-based heterojunction photocatalysts for photocatalysis. We expect that this review will serve as a valuable resource to improve the efficiency of TiO2-based heterojunctions for energy generation and environmental remediation.

9.
Small ; 20(1): e2305211, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649153

RESUMO

Traditional fluorescent anti-counterfeiting labels based on "on-off" fluorescence can be easily cloned. It is important to explore advanced anti-counterfeiting fluorescent labels with high-level security. Here, a pioneering ion species- and ion concentration-dependent anti-counterfeiting technique is developed. By successive loading Cu2+ -sensitive yellow emitted carbon dots (Y-CDs) and Cu2+ non-sensitive blue emitted carbon dots (B-CDs) into metal-organic frameworks (MOFs) and followed by electrospinning, the B&Y-CDs@MOF-nanofibrous films are prepared. The results show that the use of MOF not only avoids the fluorescence quenching of CDs but also improves the fluorescence stability. The fluorescence Cu2+ -sensitivity of the CDs@MOF-nanofibrous films can be regulated by polymer coating or lamination. The fluorescent label consisting of different Cu2+ -sensitivity films will show Cu2+ concentration-dependent decryption information. Only at a specific ion species and concentration (Cu2+ solution of 40-90 µm), the true information can be read out. Less or more concentration (<40 or >90 µm) will lead to false information. The identification of the real information depends on both the species and the concentration. After Cu2+ treatment, the fluorescence of the label can be recovered by ethylenediaminetetraacetic acid disodium (EDTA-2Na) for further recycling. This work will open up a new door for designing high-level fluorescent anti-counterfeiting labels.

10.
Am J Kidney Dis ; 83(1): 9-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37678743

RESUMO

RATIONALE & OBJECTIVE: Chronic kidney disease (CKD) leads to lipid and metabolic abnormalities, but a comprehensive investigation of lipids, lipoprotein particles, and circulating metabolites associated with the risk of CKD has been lacking. We examined the associations of nuclear magnetic resonance (NMR)-based metabolomics data with CKD risk in the UK Biobank study. STUDY DESIGN: Observational cohort study. SETTING & PARTICIPANTS: A total of 91,532 participants in the UK Biobank Study without CKD and not receiving lipid-lowering therapy. EXPOSURE: Levels of metabolites including lipid concentration and composition within 14 lipoprotein subclasses, as well as other metabolic biomarkers were quantified via NMR spectroscopy. OUTCOME: Incident CKD identified using ICD codes in any primary care data, hospital admission records, or death register records. ANALYTICAL APPROACH: Cox proportional hazards regression models were used to estimate hazard ratios and 95% confidence intervals. RESULTS: We identified 2,269 CKD cases over a median follow-up period of 13.1 years via linkage with the electronic health records. After adjusting for covariates and correcting for multiple testing, 90 of 142 biomarkers were significantly associated with incident CKD. In general, higher concentrations of very-low-density lipoprotein (VLDL) particles were associated with a higher risk of CKD whereas higher concentrations of high-density lipoprotein (HDL) particles were associated with a lower risk of CKD. Higher concentrations of cholesterol, phospholipids, and total lipids within VLDL were associated with a higher risk of CKD, whereas within HDL they were associated with a lower risk of CKD. Further, higher triglyceride levels within all lipoprotein subclasses, including all HDL particles, were associated with greater risk of CKD. We also identified that several amino acids, fatty acids, and inflammatory biomarkers were associated with risk of CKD. LIMITATIONS: Potential underreporting of CKD cases because of case identification via electronic health records. CONCLUSIONS: Our findings highlight multiple known and novel pathways linking circulating metabolites to the risk of CKD. PLAIN-LANGUAGE SUMMARY: The relationship between individual lipoprotein particle subclasses and lipid-related traits and risk of chronic kidney disease (CKD) in general population is unclear. Using data from 91,532 participants in the UK Biobank, we evaluated the associations of metabolites measured using nuclear magnetic resonance testing with the risk of CKD. We identified that 90 out of 142 lipid biomarkers were significantly associated with incident CKD. We found that very-low-density lipoproteins, high-density lipoproteins, the lipid concentration and composition within these lipoproteins, triglycerides within all the lipoprotein subclasses, fatty acids, amino acids, and inflammation biomarkers were associated with CKD risk. These findings advance our knowledge about mechanistic pathways that may contribute to the development of CKD.


Assuntos
Lipoproteínas , Insuficiência Renal Crônica , Humanos , Lipoproteínas/química , Lipoproteínas HDL/química , Espectroscopia de Ressonância Magnética/métodos , Lipoproteínas VLDL/química , Triglicerídeos , Biomarcadores , Insuficiência Renal Crônica/epidemiologia
11.
Curr Opin Biotechnol ; 85: 103023, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38007984

RESUMO

Carbon dioxide (CO2) is the node of alleviating global climate change and supporting living organisms on Earth. Currently, the warming climate and the growing population demand enhanced CO2 fixation for a sustainable future, which stimulates innovations in biotechnology to tackle these challenges. To this endeavor, synthetic biology and metabolic engineering are enabling a promising approach to engineer synthetic carbon fixation in heterotrophic organisms combining the advantages of both autotrophs and heterotrophs. Here, we review the current advances in constructing synthetic CO2 fixation pathways and discuss the underlying design principles with confronting challenges. Moreover, we highlight the application scenarios of these designs at different concentrations of CO2, and how sustainable bioproduction can be improved. We also foresee the future of engineering synthetic carbon fixation pathways for carbon recycling.


Assuntos
Dióxido de Carbono , Engenharia Metabólica , Dióxido de Carbono/metabolismo , Processos Heterotróficos , Ciclo do Carbono , Biotecnologia
12.
ACS Synth Biol ; 12(7): 2178-2186, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37436915

RESUMO

The Roseobacter clade bacteria are of great significance in marine ecology and biogeochemical cycles, and they are potential microbial chassis for marine synthetic biology due to their versatile metabolic capabilities. Here, we adapted a CRISPR-Cas-based system, base editing, with the combination of nuclease-deactivated Cas9 and deaminase for Roseobacter clade bacteria. Taking the model roseobacter Roseovarius nubinhibens as an example, we achieved precise and efficient genome editing at single-nucleotide resolution without generating double-strand breaks or requesting donor DNAs. Since R. nubinhibens can metabolize aromatic compounds, we interrogated the key genes in the ß-ketoadipate pathway with our base editing system via the introduction of premature STOP codons. The essentiality of these genes was demonstrated, and for the first time, we determined PcaQ as a transcription activator experimentally. This is the first report of CRISPR-Cas-based genome editing in the entire clade of Roseobacter bacteria. We believe that our work provides a paradigm for interrogating marine ecology and biogeochemistry with direct genotype-and-phenotype linkages and potentially opens a new avenue for the synthetic biology of marine Roseobacter bacteria.


Assuntos
Roseobacter , Roseobacter/genética , Roseobacter/metabolismo , Edição de Genes , Fenótipo , Sistemas CRISPR-Cas/genética
13.
Diabetes Obes Metab ; 25(11): 3259-3267, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37492984

RESUMO

AIM: Although lipoproteins are well-established risk factors for cardiovascular disease (CVD) mortality, conventional measurements failed to identify lipoprotein particle sizes. This study aimed to investigate associations of lipoprotein subclasses categorized by particle sizes with risk of all-cause and CVD mortality in individuals with type 2 diabetes. METHODS: This study included 6575 individuals with type 2 diabetes from the UK Biobank. Concentrations of very low-, low-, intermediate- and high-density lipoprotein [very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL), intermediate-density lipoprotein and high-density lipoprotein (HDL)] particles in 14 subclasses and lipid constituents within each subclass were measured by quantitative nuclear magnetic resonance. Multivariable-adjusted Cox proportional-hazard regression models were used to estimate the hazard ratio (HR) for per standard deviation increment of log-transformed lipoprotein subclasses with risk of mortality. All p-values were adjusted by the false discovery rate method. RESULTS: During a median follow-up of 11.4 years, 943 deaths were documented, including 310 CVD deaths. Small HDL particles were inversely associated with CVD mortality, with HR (95% CI) of 0.78 (0.69, 0.87), whereas very large and large HDL particles were positively associated with CVD mortality with HR (95% CI) of 1.28 (1.12, 1.45) and 1.19 (1.05, 1.35), respectively. A similar pattern was observed for all-cause mortality [small HDL particle (HR, 95% CI): 0.79, 0.74-0.85; large HDL particle: 1.15, 1.07-1.24; very large HDL particle: 1.26, 1.17-1.36]. For VLDL and LDL, very small VLDL particle was positively, while medium LDL particle was inversely associated with all-cause mortality, but not associated with CVD mortality. The pattern of association with all-cause and CVD mortality for cholesterol and triglyceride within lipoprotein particles was similar to those for lipoprotein particles themselves. CONCLUSIONS: The associations between lipoprotein particles, particularly HDL particles, with all-cause and CVD mortality among patients with type 2 diabetes were significantly varied by particle sizes, highlighting the importance of particle size as a lipoprotein metric in mortality risk discrimination.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Doenças Cardiovasculares/complicações , Estudos Prospectivos , Lipoproteínas , Lipoproteínas HDL , Lipoproteínas VLDL , Fatores de Risco , HDL-Colesterol
14.
JAMA Netw Open ; 6(7): e2323584, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37450300

RESUMO

Importance: Adherence to a healthy lifestyle is associated with lower risks of adverse outcomes. However, trends in multiple lifestyle factors and overall healthy lifestyle status among US adults in recent years are unknown. Objective: To examine trends in multiple lifestyle factors and overall healthy lifestyle among US adults. Design, Setting, and Participants: This serial cross-sectional study used nationally representative data from 10 National Health and Nutrition Examination Survey (NHANES) cycles (nine 2-year cycles from 1999 to 2016 and 1 combined cycle from 2017 to March 2020) among adults 20 years or older. Data were analyzed from December 10, 2021, to January 11, 2023. Exposure: Survey cycle. Main Outcomes and Measures: Five healthy lifestyle factors: never smoking, moderate or lighter alcohol consumption (for women: ≤7 drinks/wk; for men: ≤14 drinks/wk), healthy diet (Healthy Eating Index-2015 scores ≥60.0), sufficient physical activity (≥150 min/wk of equivalent moderate physical activity), and healthy weight (body mass index [calculated as weight in kilograms divided by height in meters squared] 18.5-24.9). Results: A total of 47 852 adults were included in this study. The weighted mean [SE] age was 47.3 [0.2] years; 24 539 (weighted proportion, 51.5%) were women. From the 1999-2000 cycle to the 2017 to March 2020 cycle, the estimated prevalence of the 5 lifestyle factors showed divergent trends, with increasing prevalence of never smoking (from 49.4% [95% CI, 46.4%-52.4%] to 57.7% [95% CI, 55.5%-59.9%]; difference, 8.2% [95% CI, 4.5%-12.0%]), healthy diet (from 19.3% [95% CI, 16.0%-22.6%] to 24.5% [95% CI, 21.5%-27.5%]; difference, 5.2% [95% CI, 0.8%-9.7%]), and sufficient physical activity (from 55.7% [95% CI, 51.8%-59.6%] to 69.1% [95% CI, 67.2%-71.1%]; difference, 13.4% [95% CI, 9.0%-17.8%]), while prevalence of healthy weight decreased from 33.1% (95% CI, 30.5%-35.6%) to 24.6% (95% CI, 22.6%-26.7%; difference, -8.4% [95% CI, -11.8% to -5.1%]) (all P < .001 for trend). Meanwhile, there was no significant trend in moderate or lighter alcohol consumption. Overall, the estimated prevalence of at least 4 healthy lifestyle factors increased from 15.7% (95% CI, 12.8%-18.7%) to 20.3% (95% CI, 17.8%-22.7%; difference, 4.5% [95% CI, 0.7%-8.4%]; P < .001 for trend). Disparities in healthy lifestyle were widened by age group, with little improvement among adults 65 years and older (difference, 0.04% [95% CI, -4.28% to 4.35%]). There were persistent disparities in healthy lifestyle by race and ethnicity, educational level, and income level. Conclusions and Relevance: The findings of this cross-sectional study of NHANES data over a 22-year period suggest diverse change patterns across 5 healthy lifestyle factors and a modest improvement in overall lifestyle existed among US adults, with worsening or persistent disparities in lifestyle.


Assuntos
Dieta Saudável , Dieta , Masculino , Adulto , Humanos , Feminino , Lactente , Idoso , Inquéritos Nutricionais , Autorrelato , Estudos Transversais
15.
Environ Sci Technol ; 57(27): 10079-10088, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37379503

RESUMO

Antibiotic resistance is a global health challenge, and the COVID-19 pandemic has amplified the urgency to understand its airborne transmission. The bursting of bubbles is a fundamental phenomenon in natural and industrial processes, with the potential to encapsulate or adsorb antibiotic-resistant bacteria (ARB). However, there is no evidence to date for bubble-mediated antibiotic resistance dissemination. Here, we show that bubbles can eject abundant bacteria to the air, form stable biofilms over the air-water interface, and provide opportunities for cell-cell contact that facilitates horizontal gene transfer at and over the air-liquid interface. The extracellular matrix (ECM) on bacteria can increase bubble attachment on biofilms, increase bubble lifetime, and, thus, produce abundant small droplets. We show through single-bubble probe atomic force microscopy and molecular dynamics simulations that hydrophobic interactions with polysaccharides control how the bubble interacts with the ECM. These results highlight the importance of bubbles and its physicochemical interaction with ECM in facilitating antibiotic resistance dissemination and fulfill the framework on antibiotic resistance dissemination.


Assuntos
Antagonistas de Receptores de Angiotensina , COVID-19 , Humanos , Pandemias , Inibidores da Enzima Conversora de Angiotensina , Bactérias , Resistência Microbiana a Medicamentos
16.
ACS Biomater Sci Eng ; 9(8): 4855-4866, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37387201

RESUMO

Cartilage injury is a very common joint disease, and cartilage repair is a great challenge in clinical treatment due to the specific structure of cartilage tissue and its microenvironment in vivo. The injectable self-healing hydrogel is a very promising candidate as a cartilage repair material because of its special network structure, high water retention and self-healing properties. In this work, a self-healing hydrogel cross-linked by host-guest interaction between cyclodextrin and cholic acid was developed. The host material was composed of ß-cyclodextrin and 2-hydroxyethyl methacrylate-modified poly(l-glutamic acid) (P(LGA-co-GM-co-GC)), while the guest material was chitosan modified by cholic acid, glycidyl methacrylate, and (2,3-epoxypropyl)trimethylammonium chloride (EPTAC) (QCSG-CA). The host-guest interaction self-healing hydrogels, named as HG hydrogels (HG gel), exhibited excellent injectability and self-healable property, and the self-healing efficiency was greater than 90%. Furthermore, in order to enhance the mechanical properties and slow down the degradation of the HG gel in vivo, the second network was constructed by photo-cross-linking in situ. Biocompatibility tests showed that the enhanced multi-interaction hydrogel (MI gel) was extremely suitable for cartilage tissue engineering both in vitro and in vivo. In addition, the adipose derived stem cells (ASCs) in MI gel were able to differentiate cartilage effectively in vitro in the presence of inducing agents. Subsequently, the MI gel without ASCs was transplanted into rat cartilage defects in vivo for the regeneration of cartilage. After 3 months postimplantation, new cartilage tissue was successfully regenerated in a rat cartilage defect. All results indicated that the injectable self-healing host-guest hydrogels have important potential applications in cartilage injury repair.


Assuntos
Quitosana , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Aminoácidos/farmacologia , Cartilagem , Regeneração
17.
Adv Mater ; 35(38): e2303047, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37363951

RESUMO

Constructing Van der Waals heterojunction is a crucial strategy to achieve excellent photocatalytic activity. However, in most Van der Waals heterojunctions synthesized by ex situ assembly, electron transfer encounters huge hindrances at the interface between the two components due to the large spacing and potential barrier. Herein, a phosphate-bridged Van der Waals heterojunction of cobalt phthalocyanine (CoPc)/tungsten disulfide (WS2 ) bridged by phosphate (xCoPc-nPO4 - -WS2 ) is designed and prepared by the traditional wet chemistry method. By introducing a small phosphate molecule into the interface of CoPc and WS2 , creates an electron "bridge", resulting in a compact combination and eliminating the space barrier. Therefore, the phosphate (PO4 - ) bridge can serve as an efficient electron transfer channel in heterojunction and can efficiently transmit photoelectrons from WS2 to CoPc under excited states. These excited photoelectrons are captured by the catalytic central Co2+ in CoPc and subsequently convert CO2 molecules into CO and CH4 products, achieving 17-fold enhancement on the 3CoPc-0.6PO4 - -WS2 sample compared to that of pure WS2 . Introducing a small molecule "bridge" to create an electron transfer channel provides a new perspective in designing efficient photocatalysts for photocatalytic CO2 reduction into valuable products.

18.
J Colloid Interface Sci ; 646: 932-939, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37235938

RESUMO

Polymerization and carbonization are believed as two basic processes for the bottom-up synthesis of carbon dots (CDs). Since these two processes usually occur simultaneously due to the high reaction temperature and fast reaction rate, it is still a challenge to separate and control these two processes. In the present work, we reported a new room temperature method, which achieved the separated and controlled polymerization and carbonization processes. The polymerization process is realized by dissolving o-phenylenediamine (OPD) in ethanol at room temperature, and finally obtained polymer dots (PDs) without any lattice with a sphere size of 29.6 nm. The carbonization process begins in a manual way by adding concentrated sulfuric acid. After carbonization, CDs (noted as CPDs in this work) with a size of 3.6 nm and a clear lattice can be obtained. Importantly, the separated polymerization and carbonization make us possible to adjust the composition or interactions of intermediate products during the synthesis process. As a prototype, we added acetic acid (AA) additives into OPD precursors during the polymerization stage. Due to the crosslink enhanced emission (CEE) effect via hydrogen bonds which are produced by the amide groups from AA reaction products with H in the -NH3+ or aromatic ring, the resulted CPDs show improved PLQY from an initial 6.87% (without AA) to 16.47%. The current work realized the separated and controllable polymerization and carbonization processes, opening up the door for tuning the composition and interactions of intermediate products before carbonization.

19.
Biochem Genet ; 61(6): 2481-2495, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37118619

RESUMO

Gambogic acid (GA) has been observed to effectively impede the progression of numerous types of cancers. In this study, we investigated the effects of miR-1275 and Secreted Protein Acidic and Cysteine Rich (SPARC) on GA in gastric cancer (GC). miR-1275 and SPARC expression were determined in GC cell lines and tissues using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The correlation between miR-1275 and SPARC expression was ascertained using Pearson's correlation coefficient. Cell proliferation was assessed using the cell counting kit-8 (CCK-8) assay. The Transwell assay was conducted to examine cell migration. A dual-luciferase reporter assay was used to verify the regulatory relationship between miR-1275 and SPARC. The levels of SPARC, Bcl-2, and Bax proteins were estimated using western blotting. To verify the effects of GA on the growth of GC cells in vivo, a tumorigenesis experiment was performed in nude mice. GA suppressed GC cell viability and migration, facilitated apoptosis, and inhibited tumor growth in vivo and in vitro. Low levels of miR-1275 been observed in GC cell lines and tissues. GA-treated GC cells manifested high miR-1275 levels. In functional experiments, miR-1275 enhanced the influence of GA on cell apoptosis, migration, and proliferation. Furthermore, GA treatment suppressed SPARC upregulation in GC cell lines and tissues. Pearson's correlation coefficient revealed that miR-1275 expression negatively correlated with SPARC expression. Mechanistically, miR-1275 promoted growth inhibition in GA-treated GC cells by targeting SPARC. Our study indicates that miR-1275 enhances the suppressive effect of GA on GC progression by inhibiting SPARC expression. Through this study, we contribute to the knowledge of a new mechanism by which GA suppresses GC progression.


Assuntos
MicroRNAs , Neoplasias Gástricas , Animais , Camundongos , Neoplasias Gástricas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Regulação Neoplásica da Expressão Gênica , Movimento Celular
20.
Drug Des Devel Ther ; 17: 919-935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992901

RESUMO

Purpose: Nonsteroidal anti-inflammatory drugs cause a series of adverse reactions. Thus, the search for new cyclooxygenase-2 selective inhibitors have become the main direction of research on anti-inflammatory drugs. Gentiopicroside is a novel selective inhibitor of cyclooxygenase-2 from Chinese herbal medicine. However, it is highly hydrophilic owing to the presence of the sugar fragment in its structure that reduces its oral bioavailability and limits efficacy. This study aimed to design and synthesize novel cyclooxygenase-2 inhibitors by modifying gentiopicroside structure and reducing its polarity. Materials and Methods: We introduced hydrophobic acyl chloride into the gentiopicroside structure to reduce its hydrophilicity and obtained some new derivatives. Their in vitro anti-inflammatory activities were evaluated against NO, TNF-α, PGE2, and IL-6 production in the mouse macrophage cell line RAW264.7 stimulated by lipopolysaccharide. The in vivo inhibitory activities were further tested against xylene-induced mouse ear swelling. Molecular docking predicted that whether new compounds could effectively bind to target protein cyclooxygenase-2. The inhibitory activity of new compounds to cyclooxygenase-2 enzyme were verified by the in vitro experiment. Results: A total of 21 novel derivatives were synthesized, and exhibit lower polarities than the gentiopicroside. Most compounds have good in vitro anti-inflammatory activity. The in vivo activity results demonstrated that 8 compounds were more active than gentiopicroside. The inhibition rate of some compounds was higher than celecoxib. Molecular docking predicted that 6 compounds could bind to cyclooxygenase-2 and had high docking scores in accordance with their potency of the anti-inflammatory activity. The confirmatory experiment proved that these 6 compounds had significant inhibitory effect against cyclooxygenase-2 enzyme. Structure-activity relationship analysis presumed that the para-substitution with the electron-withdrawing groups may benefit the anti-inflammatory activity. Conclusion: These gentiopicroside derivatives especially PL-2, PL-7 and PL-8 may represent a novel class of cyclooxygenase-2 inhibitors and could thus be developed as new anti-inflammatory agents.


Assuntos
Anti-Inflamatórios , Inibidores de Ciclo-Oxigenase 2 , Camundongos , Animais , Inibidores de Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Simulação de Acoplamento Molecular , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Edema/induzido quimicamente , Edema/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...