Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Surg Oncol ; 20(1): 330, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192778

RESUMO

BACKGROUND: The aim of this study was to develop comprehensive and effective nomograms for predicting overall survival (OS) and cancer-specific survival (CSS) rates in patients with colorectal mucinous adenocarcinoma (CRMA). METHODS: A total of 4711 CRMA patients who underwent radical surgery between 2010 and 2018 from the Surveillance, Epidemiology, and End Results (SEER) database were collected and randomized into development (n=3299) and validation (n=1412) cohorts at a ratio of 7:3 for model development and validation. OS and CSS nomograms were developed using the prognostic factors from the development cohort after multivariable Cox regression analysis. The performance of the nomograms was evaluated using Harrell's concordance index (C-index), calibration diagrams, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA). RESULTS: The study included 4711 patients. Multivariate Cox regression analysis demonstrated that age, tumor size, grade, pT stage, pN stage, M stage, carcinoembryonic antigen, perineural invasion, tumor deposits, regional nodes examined, and chemotherapy were correlated with OS and CSS. Marital status was independently related to OS. In the development and validation cohorts, the C-index of OS was 0.766 and 0.744, respectively, and the C-index of CSS was 0.826 and 0.809, respectively. Calibration curves and ROC curves showed predictive accuracy. DCA showed that the nomograms had excellent potency over the 8th edition of the TNM staging system with higher clinical net benefits. Significant differences in OS and CSS were observed among low-, medium-, and high-risk groups. CONCLUSIONS: Nomograms were developed for the first time to predict personalized 1-, 3-, and 5-year OS and CSS in CRMA postoperative patients. External and internal validation confirmed the excellent discrimination and calibration ability of the nomograms. The nomograms can help clinicians design personalized treatment strategies and assist with clinical decisions.


Assuntos
Adenocarcinoma Mucinoso , Neoplasias Colorretais , Adenocarcinoma Mucinoso/cirurgia , Antígeno Carcinoembrionário , Neoplasias Colorretais/cirurgia , Humanos , Estadiamento de Neoplasias , Nomogramas , Prognóstico , Programa de SEER
2.
Transl Oncol ; 20: 101423, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35429902

RESUMO

Gastric cancer (GC) is one of the most common human malignancies worldwide, but the molecular mechanism of GC has not been fully elucidated. Tetraspanin 31 (TSPAN31) has been rarely studied in human malignant tumors. This study aimed to investigate the effects of TSPAN31 on GC. We analyzed GC tissues through high-throughput sequencing technology and chose TSPAN31 with high expression. The expression of TSPAN31 in GC was analyzed through bioinformatics website and qRT-PCR. The protein level of TSPAN31 in GC tissues was determined by western blot and immunochemistry. The proliferation, migration, and apoptosis of GC cells were detected by the cell counting kit-8, transwell, and apoptosis experiments. METTL1 and CCT2 that may co-express with TSPAN31 were predicted by the GEPIA database, and analyzed the correlation between the expression levels of TSPAN31, METTL1 and CCT2. The results shows TSPAN31 was highly expressed in GC tissues, and high expression of TSPAN31 was found to result in poor prognosis of patients with GC. TSPAN31 could regulate the proliferation, migration and apoptosis of GC cells. The relative expression levels of TSPAN31, METTL1 and CCT2 in GC were positively correlated. Low expression of TSPAN31 could partially reverse the effect of high expression of METTL1 and CCT2 on the tumor progression of GC cells. In conclusion, TSPAN31 was highly expressed in GC tissues and led to poor prognosis of patients with GC. TSPAN31 may regulate the proliferation, migration, and apoptosis of GC cells. This regulatory mechanism may be achieved through co-expression with METTL1 and CCT2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...