Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(3): 1541-1550, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38199960

RESUMO

Bioreduction of soluble U(VI) to sparingly soluble U(IV) is proposed as an effective approach to remediating uranium contamination. However, the stability of biogenic U(IV) in natural environments remains unclear. We conducted U(IV) reoxidation experiments following U(VI) bioreduction in the presence of ubiquitous clay minerals and organic ligands. Bioreduced Fe-rich nontronite (rNAu-2) and Fe-poor montmorillonite (rSWy-2) enhanced U(IV) oxidation through shuttling electrons between oxygen and U(IV). Ethylenediaminetetraacetic acid (EDTA), citrate, and siderophore desferrioxamine B (DFOB) promoted U(IV) oxidation via complexation with U(IV). In the presence of both rNAu-2 and EDTA, the rate of U(IV) oxidation was between those in the presence of rNAu-2 and EDTA, due to a clay/ligand-induced change of U(IV) speciation. However, the rate of U(IV) oxidation in other combinations of reduced clay and ligands was higher than their individual ones because both promoted U(IV) oxidation. Unexpectedly, the copresence of rNAu-2/rSWy-2 and DFOB inhibited U(IV) oxidation, possibly due to (1) blockage of the electron transport pathway by DFOB, (2) inability of DFOB-complexed Fe(III) to oxidize U(IV), and (3) stability of the U(IV)-DFOB complex in the clay interlayers. These findings provide novel insights into the stability of U(IV) in the environment and have important implications for the remediation of uranium contamination.


Assuntos
Compostos Férricos , Urânio , Argila , Ligantes , Ácido Edético , Minerais , Oxirredução
2.
Environ Sci Technol ; 57(17): 6888-6897, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37083402

RESUMO

Reduced iron-containing clay (RIC) minerals have been documented to exhibit antibacterial activity through a synergistic action of extracellular membrane attack and intracellular oxidation of cellular components. However, the relative importance between extracellular and intracellular processes has remained elusive. Here, metal-chelating organic ligands (lactate, oxalate, citrate, and ethylene diaminetetraacetic acid (EDTA)) were amended to the bactericidal assays such that the importance of the two processes could be evaluated. Reduced nontronite (rNAu-2) was used as a model clay mineral to produce extracellular hydroxyl radical (•OH) upon oxygenation. The presence of Fe-chelating ligands increased •OH yield by 3-5 times. Consequently, bacterial cell membrane attack was enhanced, yet the antibacterial activity of RIC diminished. Additional experiments revealed that the ligands inhibited soluble metal ions from adsorption onto the bacterial cell membrane and/or penetration into the cytoplasm. Consequently, intracellular Fe concentration for the ligand-treated group was nearly 2 orders of magnitude lower than that for no-ligand control, which greatly decreased intracellular accumulation of reactive oxygen species (ROS) and increased cell survival. These results highlight that destruction of intracellular contents (proteins and DNA) is more important than oxidative degradation of membrane lipids and cell envelope proteins in causing bacterial cell death by RIC.


Assuntos
Silicatos de Alumínio , Radical Hidroxila , Argila , Minerais , Ferro , Oxirredução , Antibacterianos/farmacologia
3.
Environ Sci Technol ; 56(17): 12702-12712, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35980135

RESUMO

Uranium mining and nuclear fuel production have led to significant U contamination. Past studies have focused on the bioreduction of soluble U(VI) to insoluble U(IV) as a remediation method. However, U(IV) is susceptible to reoxidation and remobilization when conditions change. Here, we demonstrate that a combination of adsorption and bioreduction of U(VI) in the presence of an organic ligand (siderophore desferrioxamine B, DFOB) and the Fe-rich clay mineral nontronite partially alleviated this problem. DFOB greatly facilitated U(VI) adsorption into the interlayer of nontronite as a stable U(VI)-DFOB complex. This complex was likely reduced by bioreduction intermediates such as the Fe(II)-DFOB complex and/or through electron transfer within a ternary Fe(II)-DFOB-U(VI) complex. Bioreduction with DFOB alone resulted in a mobile aqueous U(IV)-DFOB complex, but in the presence of both DFOB and nontronite U(IV) was sequestered into a solid. These results provide novel insights into the mechanisms of U(VI) bioreduction and the stability of U and have important implications for understanding U biogeochemistry in the environment and for developing a sustainable U remediation approach.


Assuntos
Sideróforos , Urânio , Adsorção , Argila , Compostos Férricos , Compostos Ferrosos , Ferro , Minerais , Oxirredução
4.
Environ Sci Technol ; 56(3): 1983-1993, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35012308

RESUMO

Bioreduction of soluble U(VI) to sparingly soluble U(IV) solids was proposed as a remediation method for uranium contamination. Therefore, the stability and longevity of biogenic U(IV) are critical to the success of uranium remediation. However, co-occurrence of clay minerals and organic ligands could potentially reoxidize U(IV) to U(VI). Herein, we report a combined effect of Fe(III)-rich nontronite (NAu-2) and environmentally prevalent organic ligands on reoxidation of biogenic U(IV) at circumneutral pH. After 30 days of incubation, structural Fe(III) in NAu-2 oxidized 45.50% U(IV) with an initial rate of 2.7 × 10-3 mol m-2 d-1. Addition of citrate and ethylenediaminetetraacetic acid (EDTA) greatly promoted the oxidative dissolution of U(IV) by structural Fe(III) in NAu-2, primarily through the formation of aqueous ligand-U(IV) complexes. In contrast, a model siderophore, desferrioxamine B (DFOB), partially inhibited U(IV) oxidation due to the formation of stable DFOB-Fe3+ complexes. The resulting U(VI) species intercalated into an NAu-2 interlayer or adsorbed onto an NAu-2 surface. Our results highlight the importance of organic ligands in oxidative dissolution of U(IV) minerals by Fe(III)-bearing clay minerals and have important implications for the design of nuclear waste storage and remediation strategies, especially in clay- and organic-rich environments.


Assuntos
Compostos Férricos , Urânio , Argila , Compostos Férricos/química , Ligantes , Minerais
5.
Chemosphere ; 290: 133265, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34914951

RESUMO

Improper disposal of chlorinated solvents such as trichloroethylene (TCE) and its stabilizer 1,4-dioxane has resulted in extensive contamination in soils and groundwater. Oxidative degradation of these contaminants by strong oxidants has been proposed recently as a remediation strategy, but specific mechanisms and degradation efficiencies are still poorly understood, especially in commingled systems. In this study, a reduced iron-bearing clay (RIC), nontronite (rNAu-2), was oxygenated to produce hydroxyl radicals (•OH) for degradation of TCE and 1,4-dioxane under circumneutral and dark conditions. Results showed that TCE and 1,4-dioxane could be effectively degraded during oxygenation of rNAu-2 in both single and commingled systems. Compared with the single compound system, the degradation rates and efficiencies of TCE and 1,4-dioxane decreased in the commingled system. The negative effect was more significant for TCE than 1,4-dioxane. The commingled TCE and 1,4-dioxane impacted the degradation pattern of each other, due to their difference in •OH scavenging efficiency, surface affinity to rNAu-2 and solubility. Moreover, solution pH, buffer type, rNAu-2 dosage, and dissolved organic matter all affected •OH production and contaminant degradation efficiency. Our findings provide new insights for investigating the natural attenuation of commingled chlorinated solvents and 1,4-dioxane by RIC in redox-fluctuating environments and offer guidance for developing possible in-situ remediation strategies.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Argila , Dioxanos , Matéria Orgânica Dissolvida , Radical Hidroxila , Minerais , Oxirredução , Estresse Oxidativo , Tricloroetileno/análise , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 55(22): 15256-15265, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34723508

RESUMO

Reduced nontronite has been demonstrated to be antibacterial through the production of hydroxyl radical (•OH) from the oxidation of structural Fe(II). Herein, we investigated the antibacterial activity of more common smectite-illite (S-I) clays toward Escherichia coli cells, including montmorillonite SWy-3, illite IMt-2, 50-50 S-I rectorite RAr-1, 30-70 S-I ISCz-1, and nontronite NAu-2. Under an oxic condition, reduced clays (with a prefix r before mineral names) produced reactive oxygen species (ROS), and the antibacterial activity followed the order of rRAr-1 > rSWy-3 ≥ rNAu-2 ≫ rIMt-2 ≥ rISCz-1. The strongest antibacterial activity of rRAr-1 was contributed by a combination of •OH and Fe(IV) generated from structural Fe(II)/adsorbed Fe2+ and soluble Fe2+, respectively. Higher levels of lipid and protein oxidation, intracellular ROS accumulation, and membrane disruption were consistent with this antibacterial mechanism of rRAr-1. The antibacterial activity of other S-I clays depended on layer expandability, which determined the reactivity of structural Fe(II) and the production of •OH, with the expandable smectite being the most antibacterial and nonexpandable illite the least. Our results provide new insights into the antibacterial mechanisms of clay minerals.


Assuntos
Ferro , Minerais , Silicatos de Alumínio , Antibacterianos/farmacologia , Argila , Oxirredução , Silicatos
7.
Molecules ; 26(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071526

RESUMO

Developing a porous separation membrane that can efficiently separate oil-water emulsions still represents a challenge. In this study, nanofiber membranes with polydopamine clusters polymerized and embedded on the surface were successfully constructed using a solution blow-spinning process. The hierarchical surface structure enhanced the selective wettability, superhydrophilicity in air (≈0°), and underwater oleophobicity (≈160.2°) of the membrane. This membrane can effectively separate oil-water emulsions, achieving an excellent permeation flux (1552 Lm-2 h-1) and high separation efficiency (~99.86%) while operating only under the force of gravity. When the external driving pressure was increased to 20 kPa, the separation efficiency hardly changed (99.81%). However, the permeation flux significantly increased to 5894 Lm-2 h-1. These results show that the as-prepared polydopamine nanocluster-embedded nanofiber membrane has an excellent potential for oily wastewater treatment applications.

8.
Environ Sci Technol ; 55(9): 5929-5938, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33822593

RESUMO

Reduction of U(VI) to U(IV) drastically reduces its solubility and has been proposed as a method for remediation of uranium contamination. However, much is still unknown about the kinetics, mechanisms, and products of U(VI) bioreduction in complex systems. In this study, U(VI) bioreduction experiments were conducted with Shewanella putrefaciens strain CN32 in the presence of clay minerals and two organic ligands: citrate and EDTA. In reactors with U and Fe(III)-clay minerals, the rate of U(VI) bioreduction was enhanced due to the presence of ligands, likely because soluble Fe3+- and Fe2+-ligand complexes served as electron shuttles. In the presence of citrate, bioreduced U(IV) formed a soluble U(IV)-citrate complex in experiments with either Fe-rich or Fe-poor clay mineral. In the presence of EDTA, U(IV) occurred as a soluble U(IV)-EDTA complex in Fe-poor montmorillonite experiments. However, U(IV) remained associated with the solid phase in Fe-rich nontronite experiments through the formation of a ternary U(IV)-EDTA-surface complex, as suggested by the EXAFS analysis. Our study indicates that organic ligands and Fe(III)-bearing clays can significantly affect the microbial reduction of U(VI) and the stability of the resulting U(IV) phase.


Assuntos
Compostos Férricos , Urânio , Argila , Ligantes , Minerais , Oxirredução
9.
Environ Sci Technol ; 54(8): 5207-5217, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32101428

RESUMO

Previous studies have documented the antibacterial activity of certain iron-containing clays. However, the repulsion between negatively charged bacteria and the clay surface makes this process inefficient. The objective of this study is to improve the bactericidal efficiency of clays by reversing their surface charge from negative to positive. To achieve this objective, positively charged chitosan, a nontoxic and biodegradable polymer, was intercalated into nontronite NAu-2. Chitosan-intercalated NAu-2 (C-NAu-2) was chemically reduced to obtain reduced C-NAu-2 (rC-NAu-2). Relative to reduced nontronite (rNAu-2), the antibacterial activity of rC-NAu-2 is higher and more persistent over a pH range of 6-8. The close spatial association between positively charged rC-NAu-2 and negatively charged bacteria increases the chances of cell membrane attack by extracellular ROS, the influx of soluble Fe2+ into the bacterial cell, and the yield of intracellular ROS. All these factors contribute to the enhanced antibacterial activity of rC-NAu-2. In contrast to rNAu-2 treated E. coli cells, where membrane damage and intracellular ROS/Fe accumulation are restricted to the polar regions, the close bacteria-clay association in rC-NAu-2 results in nonselective membrane damage and more uniform intracellular ROS/Fe distribution across whole bacterial cells. These results advance the antibacterial model by highlighting the importance of bacteria-clay interactions to the antibacterial activity of Fe-bearing clays.


Assuntos
Quitosana , Silicatos de Alumínio , Antibacterianos , Escherichia coli , Oxirredução
10.
Environ Sci Technol ; 51(13): 7639-7647, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28570809

RESUMO

Previous work documented the general antibacterial mechanism of iron containing clays that involved hydroxyl radical (•OH) production from soluble Fe2+, and attack of cell membrane and intracellular proteins. Here we explore the role of clay structural Fe(II) in •OH production at near neutral pH and identify a lipid involved in the antibacterial process. Structural Fe(III) in nontronite NAu-2 was reduced (rNAu-2) and E. coli, a model bacterium, was exposed to rNAu-2 in oxic suspension. The antibacterial activity of rNAu-2 was dependent on pH and Fe(II) concentration, where E. coli were completely killed at pH 6, but survived at pH 7 and 8. In the presence of a •OH scavenger or in anaerobic atmosphere, E. coli survived better, suggesting that cell death may be caused by •OH generated from oxidation of structural Fe(II) in rNAu-2. In-situ imaging revealed damage of a membrane lipid, cardiolipin, in the polar region of E. coli cells, where reactive oxygen species and redox-active labile Fe were enriched. Our results advance the previous antibacterial model by demonstrating that the structural Fe(II) is the primary source of •OH, which damages cardiolipin, triggers the influx of soluble Fe2+ into the cell, and ultimately leads to cell death.


Assuntos
Silicatos de Alumínio/química , Antibacterianos/química , Ferro/química , Antibacterianos/farmacologia , Argila , Escherichia coli , Minerais , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...