Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6662, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863930

RESUMO

Large lattice expansion/contraction with Li+ intercalation/deintercalation of electrode active materials results in severe structural degradation to electrodes and can negatively impact the cycle life of solid-state lithium-based batteries. In case of the layered orthorhombic MoO3 (α-MoO3), its large lattice variation along the b axis during Li+ insertion/extraction induces irreversible phase transition and structural degradation, leading to undesirable cycle life. Herein, we propose a lattice pinning strategy to construct a coherent interface between α-MoO3 and η-Mo4O11 with epitaxial intergrowth structure. Owing to the minimal lattice change of η-Mo4O11 during Li+ insertion/extraction, η-Mo4O11 domains serve as pin centers that can effectively suppress the lattice expansion of α-MoO3, evidenced by the noticeably decreased lattice expansion from about 16% to 2% along the b direction. The designed α-MoO3/η-Mo4O11 intergrown heterostructure enables robust structural stability during cycling (about 81% capacity retention after 3000 cycles at a specific current of 2 A g-1 and 298 ± 2 K) by harnessing the merits of epitaxial stabilization and the pinning effect. Finally, benefiting from the stable positive electrode-solid electrolyte interface, a highly durable and flexible all-solid-state thin-film lithium microbattery is further demonstrated. This work advances the fundamental understanding of the unstable structure evolution for α-MoO3, and may offer a rational strategy to develop highly stable electrode materials for advanced batteries.

2.
ACS Appl Mater Interfaces ; 15(38): 44962-44973, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37713588

RESUMO

Solid-state lithium batteries (SSBs) have been widely researched as next-generation energy storage technologies due to their high energy density and high safety. However, lithium dendrite growth through the solid electrolyte usually results from the catastrophic interface contact between the solid electrolyte and lithium metal. Herein, a gradient nitrogen-doping strategy by nitrogen plasma is introduced to modify the surface and subsurface of the garnet electrolyte, which not only etches the surface impurities (e.g., Li2CO3) but also generates an in situ formed Li3N-rich interphase between the solid electrolyte and lithium anode. As a result, the Li/LLZTON-3/Li cells show a low interfacial resistance (3.50 Ω cm2) with a critical current density of about 0.65 mA cm-2 at room temperature and 1.60 mA cm-2 at 60 °C, as well as a stable cycling life for over 1300 h at 0.4 mA cm-2 at room temperature. A hybrid solid-state full cell paired with a LiFePO4 cathode exhibits excellent cycling durability and rate performance at room temperature. These results demonstrate a rational strategy to enable lithium utilization in SSBs.

3.
Adv Mater ; 35(2): e2200538, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35962983

RESUMO

As the world steps into the era of Internet of Things (IoT), numerous miniaturized electronic devices requiring autonomous micropower sources will be connected to the internet. All-solid-state thin-film lithium/lithium-ion microbatteries (TFBs) combining solid-state battery architecture and thin-film manufacturing are regarded as ideal on-chip power sources for IoT-enabled microelectronic devices. However, unlike commercialized lithium-ion batteries, TFBs are still in the immature state, and new advances in materials, manufacturing, and structure are required to improve their performance. In this review, the current status and existing challenges of TFBs for practical application in internet-connected devices for the IoT are discussed. Recent progress in thin-film deposition, electrode and electrolyte materials, interface modification, and 3D architecture design is comprehensively summarized and discussed, with emphasis on state-of-the-art strategies to improve the areal capacity and cycling stability of TFBs. Moreover, to be suitable power sources for IoT devices, the design of next-generation TFBs should consider multiple functionalities, including wide working temperature range, good flexibility, high transparency, and integration with energy-harvesting systems. Perspectives on designing practically accessible TFBs are provided, which may guide the future development of reliable power sources for IoT devices.

4.
Adv Mater ; 33(5): e2003524, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33336535

RESUMO

All-solid-state thin film lithium batteries (TFBs) are proposed as the ideal power sources for microelectronic devices. However, the high-temperature (>500 °C) annealing process of cathode films, such as LiCoO2 and LiMn2 O4, restricts the on-chip integration and potential applications of TFBs. Herein, tunnel structured Lix MnO2 nanosheet arrays are fabricated as 3D cathode for TFBs by a facile electrolyte Li+ ion infusion method at very low temperature of 180 °C. Featuring an interesting tunnel intergrowth structure consisting of alternating 1 × 3 and 1 × 2 tunnels, the Lix MnO2 cathode shows high specific capacity with good structural stability between 2.0 and 4.3 V (vs. Li+ /Li). By utilizing the 3D Lix MnO2 cathode, all-solid-state Lix MnO2 /LiPON/Li TFB (3DLMO-TFB) has been successfully constructed with prominent advantages of greatly enriched cathode/electrolyte interface and shortened Li+ diffusion length in the 3D structure. Consequently, the 3DLMO-TFB device exhibits large specific capacity (185 mAh g-1 at 50 mA g-1 ), good rate performance, and excellent cycle performance (81.3% capacity retention after 1000 cycles), outperforming the TFBs using spinel LiMn2 O4 thin film cathodes fabricated at high temperature. Importantly, the low-temperature preparation of high-performance cathode film enables the fabrication of TFBs on various rigid and flexible substrates, which could greatly expand their potential applications in microelectronics.

6.
Small ; 16(50): e2006366, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33230931

RESUMO

Sodium-ion batteries (SIBs) have been considered as one of the most promising secondary battery techniques for large-scale energy storage applications. However, developing appropriate electrode materials that can satisfy the demands of long-term cycling and high energy/power capabilities remains a challenge. Herein, a fluorine modulation strategy is reported that can trigger highly active exposed crystal facets in anatase TiO2- x Fx , while simultaneously inducing improved electron transfer and Na+ diffusion via lattice regulation. When tested in SIBs, the optimized fluorine doped TiO2- x Fx nanocrystals exhibit a high reversible capacity of 275 mA h g-1 at 0.05 A g-1 , outstanding rate capability (delivering 129 mA h g-1 at 10 A g-1 ), and remarkable cycling stability with 91% capacity retained after 6000 cycles at 2 A g-1 . Importantly, the optimized TiO2- x Fx nanocrystals are dominated by pseudocapacitive Na+ storage, which can be attributed to the fluorine induced surface and lattice regulation, enabling ultrafast electrode kinetics.

7.
Adv Sci (Weinh) ; 7(11): 1903246, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32537400

RESUMO

The formation of the soluble polysulfides (Na2S n , 4 ≤ n ≤ 8) causes poor cycling performance for room temperature sodium-sulfur (RT Na-S) batteries. Moreover, the formation of insoluble polysulfides (Na2S n , 2 ≤ n < 4) can slow down the reaction kinetics and terminate the discharge reaction before it reaches the final product. In this work, coffee residue derived activated ultramicroporous coffee carbon (ACC) material loading with small sulfur molecules (S2-4) as cathode material for RT Na-S batteries is reported. The first principle calculations indicate the space confinement of the slit ultramicropores can effectively suppress the formation of polysulfides (Na2S n , 2 ≤ n ≤ 8). Combining with in situ UV/vis spectroscopy measurements, one-step reaction RT Na-S batteries with Na2S as the only and final discharge product without polysulfides formation are demonstrated. As a result, the ultramicroporous carbon loaded with 40 wt% sulfur delivers a high reversible specific capacity of 1492 mAh g-1 at 0.1 C (1 C = 1675 mA g-1). When cycled at 1 C rate, the carbon-sulfur composite electrode exhibits almost no capacity fading after 2000 cycles with 100% coulombic efficiency, revealing excellent cycling stability and reversibility. The superb cycling stability and rate performance demonstrate ultramicropore confinement can be an effective strategy to develop high performance cathode for RT Na-S batteries.

8.
Small ; 15(4): e1804371, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30548915

RESUMO

Amorphous metal oxides (AMOs) have aroused great enthusiasm across multiple energy areas over recent years due to their unique properties, such as the intrinsic isotropy, versatility in compositions, absence of grain boundaries, defect distribution, flexible nature, etc. Here, the materials engineering of AMOs is systematically reviewed in different electrochemical applications and recent advances in understanding and developing AMO-based high-performance electrodes are highlighted. Attention is focused on the important roles that AMOs play in various energy storage and conversion technologies, such as active materials in metal-ion batteries and supercapacitors as well as active catalysts in water splitting, metal-air batteries, and fuel cells. The improvements of electrochemical performance in metal-ion batteries and supercapacitors are reviewed regarding the enhancement in active sites, mechanical strength, and defect distribution of amorphous structures. Furthermore, the high electrochemical activities boosted by AMOs in various fundamental reactions are elaborated on and they are related to the electrocatalytic behaviors in water splitting, metal-air batteries, and fuel cells. The applications in electrochromism and high-conducting sensors are also briefly discussed. Finally, perspectives on the existing challenges of AMOs for electrochemical applications are proposed, together with several promising future research directions.

9.
Small ; 14(52): e1804149, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30467972

RESUMO

3D all-solid-state thin film batteries (TFBs) are proposed as an attractive power solution for microelectronics. However, the challenge in fabricating self-supported 3D cathodes constrains the progress in developing 3D TFBs. In this work, 3D LiMn2 O4 (LMO) nanowall arrays are directly deposited on conductive substrates by magnetron sputtering via controlling the thin film growth mode. 3D TFBs based on the 3D LMO nanowall arrays and 2D TFBs based on the planar LMO thin films are successfully fabricated using a lithium phosphorous oxynitride (LiPON) electrolyte and Li anode. In comparison, the 3D TFB significantly outperforms the 2D TFB, exhibiting large specific capacity (121 mAh g-1 at 1 C), superior rate capability (83 mAh g-1 at 20 C), and good cycle performance (over 90% capacity retention after 500 cycles). The superior electrochemical performance of the 3D TFB can be attributed to the 3D architecture, which not only greatly increases the cathode/electrolyte interface and shortens the Li+ diffusion length, but also effectively enhances the structural stability. Importantly, the vertically aligned nanowall array architecture of the cathode can significantly mitigate disordered LMO formation at the cathode surface compared to the 2D planar thin film, resulting in a greatly reduced interface resistance and improved rate performance.

10.
Small ; 14(19): e1704296, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29655282

RESUMO

The electrochemical performance of most transition metal oxides based on the conversion mechanism is greatly restricted by inferior cycling stability, rate capability, high overpotential induced by the serious irreversible reactions, low electrical conductivity, and poor ion diffusivity. To mitigate these problems, highly porous Mn3 O4 micro/nanocuboids with in situ formed carbon matrix (denoted as Mn3 O4 @C micro/nanocuboids) are designed and synthesized via a one-pot hydrothermal method, in which glucose plays the roles of a reductive agent and a carbon source simultaneously. The carbon content, particle size, and pore structure in the composite can be facilely controlled, resulting in continuous carbon matrix with abundant pores in the cuboids. The as-fabricated Mn3 O4 @C micro/nanocuboids exhibit large reversible specific capacity (879 mAh g-1 at the current density of 100 mA g-1 ) as well as outstanding cycling stability (86% capacity retention after 500 cycles) and rate capability, making it a potential candidate as anode material for lithium-ion batteries. Moreover, this facile and effective synthetic strategy can be further explored as a universal approach for the synthesis of other hierarchical transition metal oxides and carbon hybrids with subtle structure engineering.

11.
ACS Nano ; 11(12): 12658-12667, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29149553

RESUMO

Metal sulfides are promising anode materials for sodium-ion batteries due to their large specific capacities. The practical applications of metal sulfides in sodium-ion batteries, however, are still limited due to their large volume expansion, poor cycling stability, and sluggish electrode kinetics. In this work, a two-dimensional heterostructure of CoSx (CoS and Co9S8) quantum dots embedded N/S-doped carbon nanosheets (CoSx@NSC) is prepared by a sol-gel method. The CoSx quantum dots are in situ formed within ultrafine carbon nanosheets without further sulfidation, thus resulting in ultrafine CoSx particle size and embedded heterostructure. Meanwhile, enriched N and S codoping in the carbon nanosheets greatly enhances the electrical conductivity for the conductive matrix and creates more active sites for sodium storage. As a result, the hybrid CoSx@NSC electrode shows excellent rate capability (600 mAh g-1 at 0.2 A g-1 and 500 mAh g-1 at 10 A g-1) and outstanding cycling stability (87% capacity retention after 200 cycles at 1 A g-1), making it promising as an anode material for high-performance sodium-ion batteries. A CoSx@NSC//Na0.44MnO2 full cell is demonstrated, and it can deliver a specific capacity of 414 mAh g-1 (based on the mass of CoSx@NSC) at a current density of 0.2 A g-1.

12.
Adv Mater ; 29(32)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28639392

RESUMO

The voltage limit for aqueous asymmetric supercapacitors is usually 2 V, which impedes further improvement in energy density. Here, high Na content Birnessite Na0.5 MnO2 nanosheet assembled nanowall arrays are in situ formed on carbon cloth via electrochemical oxidation. It is interesting to find that the electrode potential window for Na0.5 MnO2 nanowall arrays can be extended to 0-1.3 V (vs Ag/AgCl) with significantly increased specific capacitance up to 366 F g-1 . The extended potential window for the Na0.5 MnO2 electrode provides the opportunity to further increase the cell voltage of aqueous asymmetric supercapacitors beyond 2 V. To construct the asymmetric supercapacitor, carbon-coated Fe3 O4 nanorod arrays are synthesized as the anode and can stably work in a negative potential window of -1.3 to 0 V (vs Ag/AgCl). For the first time, a 2.6 V aqueous asymmetric supercapacitor is demonstrated by using Na0.5 MnO2 nanowall arrays as the cathode and carbon-coated Fe3 O4 nanorod arrays as the anode. In particular, the 2.6 V Na0.5 MnO2 //Fe3 O4 @C asymmetric supercapacitor exhibits a large energy density of up to 81 Wh kg-1 as well as excellent rate capability and cycle performance, outperforming previously reported MnO2 -based supercapacitors. This work provides new opportunities for developing high-voltage aqueous asymmetric supercapacitors with further increased energy density.

13.
Adv Mater ; 29(7)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27922736

RESUMO

A surface-modified Co3 O4 ultrathin nanosheet (denoted as PCO) is reported via controllable phosphate ion functionalization for pseudocapacitors. An energy density of 71.6 W h kg-1 (at 1500 W kg-1 ) is achieved by the PCO-based pseudocapacitor. The unique porous nanosheet morphology, high surface reactivity, and fast electrode kinetics of PCO are found to be responsible for the enhanced pseudocapacitive performance.

14.
ACS Appl Mater Interfaces ; 8(49): 33732-33740, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960432

RESUMO

Although the theoretical capacitance of MnO2 is 1370 F g-1 based on the Mn3+/Mn4+ redox couple, most of the reported capacitances in literature are far below the theoretical value even when the material goes to nanoscale. To understand this discrepancy, in this work, the electrochemical behavior and charge storage mechanism of K+-inserted α-MnO2 (or KxMnO2) nanorod arrays in broad potential windows are investigated. It is found that electrochemical behavior of KxMnO2 is highly dependent on the potential window. During cyclic voltammetry cycling in a broad potential window, K+ ions can be replaced by Na+ ions, which determines the pseudocapacitance of the electrode. The K+ or Na+ ions cannot be fully extracted when the upper cutoff potential is less than 1 V vs Ag/AgCl, which retards the release of full capacitance. As the cyclic voltammetry potential window is extended to 0-1.2 V, enhanced specific capacitance can be obtained with the emerging of new redox peaks. In contrast, the K+-free α-MnO2 nanorod arrays show no redox peaks in the same potential window together with much lower specific capacitance. This work provides new insights on understanding the charge storage mechanism of MnO2 and new strategy to further improve the specific capacitance of MnO2-based electrodes.

15.
ACS Appl Mater Interfaces ; 8(9): 6093-100, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26889785

RESUMO

Polyaniline (PANI), one of the most attractive conducting polymers for supercapacitors, demonstrates a great potential as high performance pseudocapacitor materials. However, the poor cycle life owing to structural instability remains as the major hurdle for its practical application; hence, making the structure-to-performance design on the PANI-based supercapacitors is highly desirable. In this work, unique core-shell NiCo2O4@PANI nanorod arrays (NRAs) are rationally designed and employed as the electrode material for supercapacitors. With highly porous NiCo2O4 as the conductive core and strain buffer support and nanoscale PANI layer as the electrochemically active component, such a heterostructure achieves favorably high capacitance while maintaining good cycling stability and rate capability. By adopting the optimally uniform and intimate coating of PANI, the fabricated electrode exhibits a high specific capacitance of 901 F g(-1) at 1 A g(-1) in 1 M H2SO4 electrolyte and outstanding capacitance retention of ∼91% after 3000 cycles at a high current density of 10 A g(-1), which is superior to the electrochemical performance of most reported PANI-based pseudocapacitors in literature. The enhanced electrochemical performance demonstrates the complementary contributions of both componential structures in the hybrid electrode design. Also, this work propels a new direction of utilizing porous matrix as the highly effective support for polymers toward efficient energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...