Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 3(9): 1731-1742, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37663435

RESUMO

DNA-dependent protein kinase (DNA-PK), a driver of the non-homologous end-joining (NHEJ) DNA damage response pathway, plays an instrumental role in repairing double-strand breaks (DSB) induced by DNA-damaging poisons. We evaluate ZL-2201, an orally bioavailable, highly potent, and selective pharmacologic inhibitor of DNA-PK activity, for the treatment of human cancerous malignancies. ZL-2201 demonstrated greater selectivity for DNA-PK and effectively inhibited DNA-PK autophosphorylation in a concentration- and time-dependent manner. Initial data suggested a potential correlation between ataxia-telangiectasia mutated (ATM) deficiency and ZL-2201 sensitivity. More so, ZL-2201 showed strong synergy with topoisomerase II inhibitors independent of ATM status in vitro. In vivo oral administration of ZL-2201 demonstrated dose-dependent antitumor activity in the NCI-H1703 xenograft model and significantly enhanced the activity of approved DNA-damaging agents in A549 and FaDu models. From a phosphoproteomic mass spectrometry screen, we identified and validated that ZL-2201 and PRKDC siRNA decreased Ser108 phosphorylation of MCM2, a key DNA replication factor. Collectively, we have characterized a potent and selective DNA-PK inhibitor with promising monotherapy and combinatory therapeutic potential with approved DNA-damaging agents. More importantly, we identified phospho-MCM2 (Ser108) as a potential proximal biomarker of DNA-PK inhibition that warrants further preclinical and clinical evaluation. Significance: ZL-2201, a potent and selective DNA-PK inhibitor, can target tumor models in combination with DNA DSB-inducing agents such as radiation or doxorubicin, with potential to improve recurrent therapies in the clinic.


Assuntos
Proteína Quinase Ativada por DNA , Humanos , Administração Oral , Fosforilação , Animais , Proteína Quinase Ativada por DNA/antagonistas & inibidores
2.
Org Lett ; 19(11): 2809-2812, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28530100

RESUMO

A class of N-(naphthalen-1-yl)-N'-alkyl oxalamides have been proven to be powerful ligands, making a coupling reaction of (hetero)aryl iodides with primary amines proceed at 50 °C with only 0.01 mol % of Cu2O and ligand as well as a coupling reaction of (hetero)aryl bromides with primary amines and ammonia at 80 °C with only 0.1 mol % of Cu2O and ligand. A wide range of coupling partners work well under these conditions, thereby providing an easy to operate method for preparing (hetero)aryl amines.

3.
J Am Chem Soc ; 138(41): 13493-13496, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27682010

RESUMO

The combination of Cu(acac)2 and N,N'-bis(4-hydroxyl-2,6-dimethylphenyl)oxalamide (BHMPO) provides a powerful catalytic system for hydroxylation of (hetero)aryl halides. A wide range of (hetero)aryl chlorides bearing either electron-donating or -withdrawing groups proceeded well at 130 °C, delivering the corresponding phenols and hydroxylated heteroarenes in good to excellent yields. When more reactive (hetero)aryl bromides and iodides were employed, the hydroxylation reactions completed at relatively low temperatures (80 and 60 °C, respectively) at low catalytic loadings (0.5 mol % Cu).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...