Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 315, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454349

RESUMO

PURPOSE: Rectal tumor segmentation on post neoadjuvant chemoradiotherapy (nCRT) magnetic resonance imaging (MRI) has great significance for tumor measurement, radiomics analysis, treatment planning, and operative strategy. In this study, we developed and evaluated segmentation potential exclusively on post-chemoradiation T2-weighted MRI using convolutional neural networks, with the aim of reducing the detection workload for radiologists and clinicians. METHODS: A total of 372 consecutive patients with LARC were retrospectively enrolled from October 2015 to December 2017. The standard-of-care neoadjuvant process included 22-fraction intensity-modulated radiation therapy and oral capecitabine. Further, 243 patients (3061 slices) were grouped into training and validation datasets with a random 80:20 split, and 41 patients (408 slices) were used as the test dataset. A symmetric eight-layer deep network was developed using the nnU-Net Framework, which outputs the segmentation result with the same size. The trained deep learning (DL) network was examined using fivefold cross-validation and tumor lesions with different TRGs. RESULTS: At the stage of testing, the Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and mean surface distance (MSD) were applied to quantitatively evaluate the performance of generalization. Considering the test dataset (41 patients, 408 slices), the average DSC, HD95, and MSD were 0.700 (95% CI: 0.680-0.720), 17.73 mm (95% CI: 16.08-19.39), and 3.11 mm (95% CI: 2.67-3.56), respectively. Eighty-two percent of the MSD values were less than 5 mm, and fifty-five percent were less than 2 mm (median 1.62 mm, minimum 0.07 mm). CONCLUSIONS: The experimental results indicated that the constructed pipeline could achieve relatively high accuracy. Future work will focus on assessing the performances with multicentre external validation.


Assuntos
Aprendizado Profundo , Neoplasias Retais , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Terapia Neoadjuvante , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/terapia , Neoplasias Retais/patologia , Estudos Retrospectivos , Semântica
2.
Entropy (Basel) ; 24(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36421513

RESUMO

The short-chain hydrocarbon polymerization-catalyzed synthetic fuel technology has great development potential in the fields of energy storage and renewable energy. Modeling and optimization of a short-chain hydrocarbon polymerization-catalyzed synthetic fuel process involving mixers, compressors, heat exchangers, reactors, and separators are performed through finite-time thermodynamics. Under the given conditions of the heat source temperature of the heat exchanger and the reactor, the optimal performance of the process is solved by taking the mole fraction of components, pressure, and molar flow as the optimization variables, and taking the minimum entropy generation rate (MEGR) of the process as the optimization objective. The results show that the entropy generation rate of the optimized reaction process is reduced by 48.81% compared to the reference process; among them, the component mole fraction is the most obvious optimization variable. The research results have certain theoretical guiding significance for the selection of the operation parameters of the short-chain hydrocarbon polymerization-catalyzed synthetic fuel process.

3.
Int J Colorectal Dis ; 37(11): 2321-2333, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36243807

RESUMO

PURPOSE: Reassessment tools of response to long-course neoadjuvant chemoradiation treatment (nCRT) in patients with locally advanced rectal cancer (LARC) are important in predicting complete response (CR) and thus deciding whether a wait-and-watch strategy can be implemented in these patients. Choosing which routine reassessment tools are optimal and when to use them is still unclear and will be researched in the study. METHODS: Altogether, 250 patients with LARC who received nCRT from 2013 to 2021 and were followed up were retrospectively reviewed. Common reassessment tools of response included digital rectal examination (DRE), clinical examination and symptoms, endoscopy, biopsy, magnetic resonance imaging (MRI), and blood biomarkers. RESULTS: Overall, 27.20% (68/250) patients had a complete response and 72.80% (182/250) did not. The combination of MRI, endoscopy, and biopsy showed the best performance in terms of accuracy of 74% and area under the curve (AUC, 0.714, 95% CI 0.546-0.882). Reassessing through DRE and presence of symptoms failed to improve the efficacy of response reassessment. After 100 days, biopsy as an assessment tool would obtain a substantial rise in accuracy from 51.28 to 100% (p = 0.003). CONCLUSION: The combination of MRI, endoscopy, and biopsy is suitable as the reassessment tool of response for applying a wait-and-watch strategy after long-course nCRT in patients with LARC. The accuracy of biopsy as reassessment tools would be improved if they were used over 100 days after nCRT in patients with rectal cancer.


Assuntos
Terapia Neoadjuvante , Neoplasias Retais , Humanos , Terapia Neoadjuvante/métodos , Estudos Retrospectivos , Quimiorradioterapia/métodos , Resultado do Tratamento , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/terapia
4.
Membranes (Basel) ; 12(10)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36295731

RESUMO

Ammonia is an excellent medium for solar thermal chemical energy storage and can also use excess heat to produce hydrogen without carbon emission. To deepen the study of ammonia decomposition in these two fields, finite-time thermodynamics is used to model a solar-heating, co-current sweeping ammonia decomposition membrane reactor. According to the needs of energy storage systems and solar hydrogen production, five performance indicators are put forward, including the heat absorption rate (HAR), ammonia conversion rate (ACR), hydrogen production rate (HPR), entropy generation rate (EGR) and energy conversion rate (ECR). The effects of the light intensity, ammonia flow rate, nitrogen flow rate and palladium membrane radius on system performances are further analyzed. The results show that the influences of the palladium membrane radius and nitrogen flow rate on reactor performances are very slight. When the light intensity is increased from 500 W/m2 to 800 W/m2, the ACR, EGR, HAR and HPR increase obviously, but the ECR decreases by 14.2%. When the ammonia flow rate is increased by 100%, the ECR, EGR and HPR increase by more than 70%, the HAR increases by 15.6% and the ACR decreases by 12.9%. At the same time, the ammonia flow rate needs to be adjusted with the light intensity. The results can provide some guiding significance for the engineering application of ammonia solar energy storage systems and solar hydrogen production.

5.
Entropy (Basel) ; 24(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36141078

RESUMO

The unsteady process of the acidification of seawater by using an electrochemical acidification cell (EAC) is studied in this paper. The model of the concentration of hydrogen ions (H+) in the effluent seawater and the cell voltage of EAC varying with time and working current are built by applying the theory of finite-time thermodynamics, respectively. The semi-empirical formulas of the concentration of H+ in the effluent seawater and the cell voltage under the constant current of the Ionpure EAC are obtained, respectively, by fitting the experimental data of the Ionpure EAC. Then, the simulated data are compared with the experimental data. The total work consumption and average power consumption of the Ionpure EAC are obtained from the semi-empirical formulas. The results show that the semi-empirical formulas can simulate the operation process of the Ionpure EAC well. The validity of the models is verified. The increase of the working current will increase the total work consumption and average power consumption of the Ionpure EAC. The proper current can be selected in engineering practice to achieve different goals, such as high efficiency or low energy consumption. The obtained results can provide some guidelines for the optimal design and optimization of EAC.

6.
Membranes (Basel) ; 12(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35736334

RESUMO

In this paper, an ammonia decomposition membrane reactor is applied to a solar heat absorption system, and thermodynamic optimization is carried out according to the usage scenarios. First, a model of an ammonia decomposition solar heat absorption system based on the membrane reactor is established by using finite time thermodynamics (FTT) theory. Then, the three-objective optimization with and the four-objective optimization without the constraint of the given heat absorption rate are carried out by using the NSGA-II algorithm. Finally, the optimized performance objectives and the corresponding design parameters are obtained by using the TOPSIS decision method. Compared with the reference system, the TOPSIS optimal solution for the three-objective optimization can reduce the entropy generation rate by 4.8% and increase the thermal efficiency and energy conversion rate by 1.5% and 1.4%, respectively. The optimal solution for the four-objective optimization can reduce the heat absorption rate, entropy generation rate, and energy conversion rate by 15.5%, 14%, and 8.7%, respectively, and improve the thermal efficiency by 15.7%. The results of this paper are useful for the theoretical study and engineering application of ammonia solar heat absorption systems based on membrane reactors.

7.
Entropy (Basel) ; 24(5)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35626545

RESUMO

The use of olefin oligomerization in the synthesis of liquid fuel has broad application prospects in military and civil fields. Here, based on finite time thermodynamics (FTT), an ethylene oligomerization chemical process (EOCP) model with a constant temperature heat source outside the heat exchanger and reactor pipes was established. The process was first optimized with the minimum specific entropy generation rate (SEGR) as the optimization objective, then multi-objective optimization was further performed by utilizing the NSGA-II algorithm with the minimization of the entropy generation rate (EGR) and the maximization of the C10H20 yield as the optimization objectives. The results showed that the point of the minimum EGR was the same as that of SEGR in the Pareto optimal frontier. The solution obtained using the Shannon entropy decision method had the lowest deviation index, the C10H20 yield was reduced by 49.46% compared with the point of reference and the EGR and SEGR were reduced by 59.01% and 18.88%, respectively.

8.
Entropy (Basel) ; 24(5)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35626615

RESUMO

In this paper, a recompression S-CO2 Brayton cycle model that considers the finite-temperature difference heat transfer between the heat source and the working fluid, irreversible compression, expansion, and other irreversibility is established. First, the ecological function is analyzed. Then the mass flow rate, pressure ratio, diversion coefficient, and the heat conductance distribution ratios (HCDRs) of four heat exchangers (HEXs) are chosen as variables to optimize cycle performance, and the problem of long optimization time is solved by building a neural network prediction model. The results show that when the mass flow rate is small, the pressure ratio, the HCDRs of heater, and high temperature regenerator are the main influencing factors of the ecological function; when the mass flow rate is large, the influences of the re-compressor, the HCDRs of low temperature regenerator, and cooler on the ecological function increase; reasonable adjustment of the HCDRs of four HEXs can make the cycle performance better, but mass flow rate plays a more important role; the ecological function can be increased by 12.13%, 31.52%, 52.2%, 93.26%, and 96.99% compared with the initial design point after one-, two-, three-, four- and five-time optimizations, respectively.

9.
Entropy (Basel) ; 24(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37420471

RESUMO

A model of a multi-reservoir resource exchange intermediary also defined as a commercial engine is proposed according to analogies and similarities between thermodynamics and economics. The optimal configuration of a multi-reservoir commercial engine with a maximum profit output objective is determined by applying optimal control theory. The optimal configuration consists of two instantaneous constant commodity flux processes and two constant price processes, and the configuration is independent of a number of economic subsystems and commodity transfer law qualitatively. The maximum profit output needs some economic subsystems to never contact with the commercial engine during commodity transfer processes. Numerical examples are provided for a three-economic-subsystem commercial engine with linear commodity transfer law. The effects of price changes of an intermediate economic subsystem on the optimal configuration of a three-economic-subsystem and the performance of optimal configuration are discussed. The research object is general, and the results can provide some theoretical guidelines for operations of actual economic processes and systems.

10.
Entropy (Basel) ; 23(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34828226

RESUMO

A model of rectangular microchannel heat sink (MCHS) with porous medium (PM) is developed. Aspect ratio of heat sink (HS) cell and length-width ratio of HS are optimized by numerical simulation method for entropy generation minimization (EGM) according to constructal theory. The effects of inlet Reynolds number (Re) of coolant, heat flux on bottom, porosity and volume proportion of PM on dimensionless entropy generation rate (DEGR) are analyzed. From the results, there are optimal aspect ratios to minimize DEGR. Given the initial condition, DEGR is 33.10% lower than its initial value after the aspect ratio is optimized. With the increase of Re, the optimal aspect ratio declines, and the minimum DEGR drops as well. DEGR gets larger and the optimal aspect ratio remains constant with the increasing of heat flux on bottom. For the different volume proportion of PM, the optimal aspect ratios are diverse, but the minimum DEGR almost stays unchanged. The twice minimized DEGR, which results from aspect ratio and length-width ratio optimized simultaneously, is 10.70% lower than the once minimized DEGR. For a rectangular bottom, a lower DEGR can be reached by choosing the proper direction of fluid flow.

11.
Entropy (Basel) ; 23(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429980

RESUMO

The thermochemical sulfur-iodine cycle is a potential method for hydrogen production, and the hydrogen iodide (HI) decomposition is the key step to determine the efficiency of hydrogen production in the cycle. To further reduce the irreversibility of various transmission processes in the HI decomposition reaction, a one-dimensional plug flow model of HI decomposition tubular reactor is established, and performance optimization with entropy generate rate minimization (EGRM) in the decomposition reaction system as an optimization goal based on finite-time thermodynamics is carried out. The reference reactor is heated counter-currently by high-temperature helium gas, the optimal reactor and the modified reactor are designed based on the reference reactor design parameters. With the EGRM as the optimization goal, the optimal control method is used to solve the optimal configuration of the reactor under the condition that both the reactant inlet state and hydrogen production rate are fixed, and the optimal value of total EGR in the reactor is reduced by 13.3% compared with the reference value. The reference reactor is improved on the basis of the total EGR in the optimal reactor, two modified reactors with increased length are designed under the condition of changing the helium inlet state. The total EGR of the two modified reactors are the same as that of the optimal reactor, which are realized by decreasing the helium inlet temperature and helium inlet flow rate, respectively. The results show that the EGR of heat transfer accounts for a large proportion, and the decrease of total EGR is mainly caused by reducing heat transfer irreversibility. The local total EGR of the optimal reactor distribution is more uniform, which approximately confirms the principle of equipartition of entropy production. The EGR distributions of the modified reactors are similar to that of the reference reactor, but the reactor length increases significantly, bringing a relatively large pressure drop. The research results have certain guiding significance to the optimum design of HI decomposition reactors.

12.
Entropy (Basel) ; 24(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35052078

RESUMO

The exothermic reactor for ammonia synthesis is a primary device determining the performance of the energy storage system. The Braun-type ammonia synthesis reactor is used as the exothermic reactor to improve the heat release rate. Due to the entirely different usage scenarios and design objectives, its parameters need to be redesigned and optimized. Based on finite-time thermodynamics, a one-dimensional model is established to analyze the effects of inlet gas molar flow rate, hydrogen-nitrogen ratio, reactor length and inlet temperature on the total entropy generation rate and the total exothermic rate of the reactor. It's found that the total exothermic rate mainly depends on the inlet molar flow rate. Furthermore, considering the minimum total entropy generation rate and maximum total exothermic rate, the NSGA-II algorithm is applied to optimize seven reactor parameters including the inlet molar flow rate, lengths and temperatures of the three reactors. Lastly, the optimized reactor is obtained from the Pareto front using three fuzzy decision methods and deviation index. Compared with the reference reactor, the total exothermic rate of the optimized reactor is improved by 12.6% while the total entropy generation rate is reduced by 3.4%. The results in this paper can provide some guidance for the optimal design and application of exothermic reactors in practical engineering.

13.
Entropy (Basel) ; 22(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-33286834

RESUMO

Based on the theory of finite-time thermodynamics (FTT), the effects of three design parameters, that is, inlet temperature, inlet pressure, and inlet total mole flow rate, of a tubular plug-flow sulfuric acid decomposition reactor on the total entropy generation rate (EGR) and SO2 yield are analyzed firstly. One can find that when the three design parameters are taken as optimization variables, the minimum total EGR and the maximum SO2 yield of the reference reactor restrict each other, i.e., the two different performance objectives cannot achieve the corresponding extremum values at the same time. Then, the second-generation non-dominated solution sequencing genetic algorithm (NSGA-II) is further used to pursue the minimum total EGR and the maximum SO2 yield of the reference reactor by taking the three parameters as optimization design variables. After the multi-objective optimization, the reference reactor can be Pareto improved, and the total EGR can be reduced by 9% and the SO2 yield can be increased by 14% compared to those of the reference reactor. The obtained results could provide certain theoretical guidance for the optimal design of actual sulfuric acid decomposition reactors.

14.
Entropy (Basel) ; 21(2)2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33266890

RESUMO

The methanol synthesis via CO2 hydrogenation (MSCH) reaction is a useful CO2 utilization strategy, and this synthesis path has also been widely applied commercially for many years. In this work the performance of a MSCH reactor with the minimum entropy generation rate (EGR) as the objective function is optimized by using finite time thermodynamic and optimal control theory. The exterior wall temperature (EWR) is taken as the control variable, and the fixed methanol yield and conservation equations are taken as the constraints in the optimization problem. Compared with the reference reactor with a constant EWR, the total EGR of the optimal reactor decreases by 20.5%, and the EGR caused by the heat transfer decreases by 68.8%. In the optimal reactor, the total EGRs mainly distribute in the first 30% reactor length, and the EGRs caused by the chemical reaction accounts for more than 84% of the total EGRs. The selectivity of CH3OH can be enhanced by increasing the inlet molar flow rate of CO, and the CO2 conversion rate can be enhanced by removing H2O from the reaction system. The results obtained herein are in favor of optimal designs of practical tubular MSCH reactors.

15.
Entropy (Basel) ; 20(6)2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-33265505

RESUMO

Thermal design and optimization for reverse water gas shift (RWGS) reactors is particularly important to fuel synthesis in naval or commercial scenarios. The RWGS reactor with irreversibilities of heat transfer, chemical reaction and viscous flow is studied based on finite time thermodynamics or entropy generation minimization theory in this paper. The total entropy generation rate (EGR) in the RWGS reactor with different boundary conditions is minimized subject to specific feed compositions and chemical conversion using optimal control theory, and the optimal configurations obtained are compared with three reference reactors with linear, constant reservoir temperature and constant heat flux operations, which are commonly used in engineering. The results show that a drastic EGR reduction of up to 23% can be achieved by optimizing the reservoir temperature profile, the inlet temperature of feed gas and the reactor length simultaneously, compared to that of the reference reactor with the linear reservoir temperature. These optimization efforts are mainly achieved by reducing the irreversibility of heat transfer. Optimal paths have subsections of relatively constant thermal force, chemical force and local EGR. A conceptual optimal design of sandwich structure for the compact modular reactor is proposed, without elaborate control tools or excessive interstage equipment. The results can provide guidelines for designing industrial RWGS reactors in naval or commercial scenarios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...