Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Immunol ; 83(11): 778-788, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35999072

RESUMO

T cells used in immune cell therapy, represented by T cell receptor therapy (TCR-T), are usually activated and proliferated in vitro and are induced to a terminally differentiated phenotype, with limited viability after transfusion back into the body. T cells exhibited a robust proliferative potential and in vivo viability in the early stages of progressive differentiation. In this study, we identified microRNAs that regulate T cell differentiation. After microRNA sequencing of the four subsets: Naïve T cells (TN), stem cell-like memory T cells (TSCM), central memory T cells (TCM), and effector memory T cells (TEM), miR-150 was identified as the most highly expressed miRNA among the four subsets and was lowly expressed in the TSCM cells. We predicted the target genes of miR-150 miRNA and performed Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes analyses. We observed that the target genes of miR-150 were enriched in pathways associated with T-cell differentiation. FOXP1 and RC3H1 were identified as key target genes of miR-150 in the regulation of T-cell function. We examined the effects of miR-150 on the differentiation and function of healthy donor T-cells. We observed that miR-150 overexpression promoted T-cell differentiation to effector T-cells and effector memory T-cells, enhanced apoptosis, inhibited cell proliferation and increased secretion of pro-inflammatory cytokines such as IFN-γ and TNF-α. In addition, the expressions of early differentiation-related genes (ACTN1, CERS6, BCL2, and EOMES), advanced differentiation-related genes (KLRG1), and effector-function-related genes (PRF1 and GZMB) were significantly decreased after overexpression of miR-150. Collectively, our results suggested that miR-150 can promote progressive differentiation of T cells and the downmodulation of miR-150 expression while performing adoptive immunotherapy may inhibit T-cell differentiation and increase the proliferative potential of T cells.


Assuntos
Memória Imunológica , MicroRNAs , Diferenciação Celular/genética , Citocinas/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas de Ligação a RNA/farmacologia , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/farmacologia
2.
Immunogenetics ; 74(2): 231-244, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35001141

RESUMO

Effector T cells, which are abundant but are short-lived after reinfusion into the body, are generally used for T-cell therapy, and antitumor immunity is typically not maintained over the long term. Genetic modification by early differentiated T cells and reinfusion has been shown to enhance antitumor immunity in vivo. This study overexpressed the characteristic transcription factors of differentiated early T cells by transfecting effector T cells with transcription factor recombinant lentivirus (S6 group: BCL6, EOMES, FOXP1, LEF1, TCF7, KLF7; S1 group: BCL6, EOMES, FOXP1, KLF7; S3 group: BCL6, EOMES, FOXP1, LEF1) to induce a sufficient number of effector T cells to dedifferentiate and optimize the transcription factor system. The results revealed that overexpression of early characteristic transcription factors in effector T cells upregulated the expression of early T cell differentiation markers (CCR7 and CD62L), with the S1 group having the highest expression level, while the rising trend of late differentiation marker (CD45RO) expression was suppressed. Moreover, the expression of early differentiation-related genes (ACTN1, CERS6, BCL2) was significantly increased, while the expression of late differentiation-related genes (KLRG-1) and effector function-related genes (GNLY, GZMB, PRF1) was significantly decreased; this difference in expression was more significant in the S1 group than in the other two experimental groups. The antiapoptotic ability of each experimental group was significantly enhanced, while the secretion ability of TNF-α and IFN-γ was weakened, with the effector cytokine secretion ability of the S1 group being the weakest. Transcriptomic analysis showed that the gene expression profile of each experimental group was significantly different from that of the control group, with differences in the gene expression pattern and number of differentially expressed genes in the S1 group compared with the other two experimental groups. The differentially expressed gene enrichment pathways were basically related to the cell cycle, cell division, and immune function. In conclusion, overexpression of early characteristic transcription factors in effector T cells induces their dedifferentiation, and induction of dedifferentiation by the S1 group may be more effective.


Assuntos
Desdiferenciação Celular , Fatores de Transcrição , Linfócitos T CD8-Positivos , Desdiferenciação Celular/genética , Diferenciação Celular/genética , Fenótipo , Subpopulações de Linfócitos T , Fatores de Transcrição/genética
3.
Cell Immunol ; 353: 104118, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32413598

RESUMO

The in vivo proliferation and viability of transfused engineered T cells markedly limits the long-term effect of adoptive cell therapy on tumors. The therapeutic efficacy and proliferative potential of T cells are reported to be dependent on the differentiation status of T cells. The T cells at the early stage of progressive differentiation have a long lifespan, strong proliferative potential, and the ability to reconstruct intact T cell subsets. Thus, they are more suitable for adoptive immunotherapy. Previously, it was difficult to obtain a sufficient number of early differentiated T cells by inhibiting the progressive differentiation of T cells or by two-step programming. A more effective strategy is to directly reprogram and dedifferentiate the easily available terminal effector T (TEFF) cells, which are generated in large numbers, into early T cells. This study attempted to overexpress eight (candidate) early differentiation-specific transcription factors (TFs) (LEF1, KLF7, ID3, EOMES, BCL6, TCF7, FOXP1, and FOXO1) in the TEFF cells, which were activated by in vitro stimulation, to promote dedifferentiation into early T cells. In the mature TEFF cells simultaneously overexpressing these specific TFs, the expression pattern of T cell differentiation markers (CCR7 and CD45RO) exhibited a tendency to change to the pattern observed during early differentiation. The transcriptome analysis revealed that the function of differentially expressed genes was mainly concentrated in the cell cycle, growth and development, and effector function. Moreover, many genes related to early differentiated T cells (such as BCL2 and PIM1) were significantly upregulated, while those related to the effector function of TEFF cells were significantly downregulated (such as GZMB, PRF1, and GNLY). Additionally, the TEFF cells overexpressing characteristic TFs exhibited enhanced anti-apoptotic capabilities and decreased secretion of cytokines (IFN-γ and TNF-α). Based on these results, we believe that the TEFF cells were reprogrammed into a less differentiated state after overexpression of the eight specific TFs.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Desdiferenciação Celular/imunologia , Diferenciação Celular/genética , Transferência Adotiva , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Citocinas/metabolismo , Hematopoese , Humanos , Memória Imunológica , Interferon gama/metabolismo , Ativação Linfocitária , Subpopulações de Linfócitos T/imunologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...