Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 41, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303023

RESUMO

Protein function annotation has been one of the longstanding issues in biological sciences, and various computational methods have been developed. However, the existing methods suffer from a serious long-tail problem, with a large number of GO families containing few annotated proteins. Herein, an innovative strategy named AnnoPRO was therefore constructed by enabling sequence-based multi-scale protein representation, dual-path protein encoding using pre-training, and function annotation by long short-term memory-based decoding. A variety of case studies based on different benchmarks were conducted, which confirmed the superior performance of AnnoPRO among available methods. Source code and models have been made freely available at: https://github.com/idrblab/AnnoPRO and https://zenodo.org/records/10012272.


Assuntos
Aprendizado Profundo , Humanos , Biologia Computacional/métodos , Proteínas/metabolismo , Software , Anotação de Sequência Molecular
2.
Nucleic Acids Res ; 51(21): e110, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889083

RESUMO

RNAs play essential roles in diverse physiological and pathological processes by interacting with other molecules (RNA/protein/compound), and various computational methods are available for identifying these interactions. However, the encoding features provided by existing methods are limited and the existing tools does not offer an effective way to integrate the interacting partners. In this study, a task-specific encoding algorithm for RNAs and RNA-associated interactions was therefore developed. This new algorithm was unique in (a) realizing comprehensive RNA feature encoding by introducing a great many of novel features and (b) enabling task-specific integration of interacting partners using convolutional autoencoder-directed feature embedding. Compared with existing methods/tools, this novel algorithm demonstrated superior performances in diverse benchmark testing studies. This algorithm together with its source code could be readily accessed by all user at: https://idrblab.org/corain/ and https://github.com/idrblab/corain/.


Assuntos
Biologia Computacional , RNA , RNA/genética , Biologia Computacional/métodos , Algoritmos , Software
3.
Nucleic Acids Res ; 51(W1): W509-W519, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37166951

RESUMO

Ribonucleic acids (RNAs) involve in various physiological/pathological processes by interacting with proteins, compounds, and other RNAs. A variety of powerful computational methods have been developed to predict such valuable interactions. However, all these methods rely heavily on the 'digitalization' (also known as 'encoding') of RNA-associated interacting pairs into a computer-recognizable descriptor. In other words, it is urgently needed to have a powerful tool that can not only represent each interacting partner but also integrate both partners into a computer-recognizable interaction. Herein, RNAincoder (deep learning-based encoder for RNA-associated interactions) was therefore proposed to (a) provide a comprehensive collection of RNA encoding features, (b) realize the representation of any RNA-associated interaction based on a well-established deep learning-based embedding strategy and (c) enable large-scale scanning of all possible feature combinations to identify the one of optimal performance in RNA-associated interaction prediction. The effectiveness of RNAincoder was extensively validated by case studies on benchmark datasets. All in all, RNAincoder is distinguished for its capability in providing a more accurate representation of RNA-associated interactions, which makes it an indispensable complement to other available tools. RNAincoder can be accessed at https://idrblab.org/rnaincoder/.


Assuntos
Biologia Computacional , RNA , Biologia Computacional/métodos , Aprendizado Profundo , Proteínas/metabolismo , RNA/genética , RNA/metabolismo , Internet
4.
Comput Biol Med ; 145: 105465, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35366467

RESUMO

Bioinformatic annotation of protein function is essential but extremely sophisticated, which asks for extensive efforts to develop effective prediction method. However, the existing methods tend to amplify the representativeness of the families with large number of proteins by misclassifying the proteins in the families with small number of proteins. That is to say, the ability of the existing methods to annotate proteins in the 'rare classes' remains limited. Herein, a new protein function annotation strategy, PFmulDL, integrating multiple deep learning methods, was thus constructed. First, the recurrent neural network was integrated, for the first time, with the convolutional neural network to facilitate the function annotation. Second, a transfer learning method was introduced to the model construction for further improving the prediction performances. Third, based on the latest data of Gene Ontology, the newly constructed model could annotate the largest number of protein families comparing with the existing methods. Finally, this newly constructed model was found capable of significantly elevating the prediction performance for the 'rare classes' without sacrificing that for the 'major classes'. All in all, due to the emerging requirements on improving the prediction performance for the proteins in 'rare classes', this new strategy would become an essential complement to the existing methods for protein function prediction. All the models and source codes are freely available and open to all users at: https://github.com/idrblab/PFmulDL.


Assuntos
Aprendizado Profundo , Biologia Computacional/métodos , Anotação de Sequência Molecular , Redes Neurais de Computação , Proteínas/genética , Proteínas/metabolismo
5.
Nucleic Acids Res ; 48(W1): W436-W448, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32324219

RESUMO

Biological processes (like microbial growth & physiological response) are usually dynamic and require the monitoring of metabolic variation at different time-points. Moreover, there is clear shift from case-control (N=2) study to multi-class (N>2) problem in current metabolomics, which is crucial for revealing the mechanisms underlying certain physiological process, disease metastasis, etc. These time-course and multi-class metabolomics have attracted great attention, and data normalization is essential for removing unwanted biological/experimental variations in these studies. However, no tool (including NOREVA 1.0 focusing only on case-control studies) is available for effectively assessing the performance of normalization method on time-course/multi-class metabolomic data. Thus, NOREVA was updated to version 2.0 by (i) realizing normalization and evaluation of both time-course and multi-class metabolomic data, (ii) integrating 144 normalization methods of a recently proposed combination strategy and (iii) identifying the well-performing methods by comprehensively assessing the largest set of normalizations (168 in total, significantly larger than those 24 in NOREVA 1.0). The significance of this update was extensively validated by case studies on benchmark datasets. All in all, NOREVA 2.0 is distinguished for its capability in identifying well-performing normalization method(s) for time-course and multi-class metabolomics, which makes it an indispensable complement to other available tools. NOREVA can be accessed at https://idrblab.org/noreva/.


Assuntos
Metabolômica/métodos , Software
6.
Curr Med Chem ; 27(34): 5758-5772, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31560282

RESUMO

Tumor metastasis is a significant cause of malignant cancer-related death. Therefore, inhibiting tumor metastasis is an effective means of treating malignant tumors. Increasing our understanding of the molecular mechanisms that govern tumor metastasis can reveal new anti-cancer targets. This article will discuss the breakthroughs in this area and the corresponding recent developments in anti-cancer drug discovery.


Assuntos
Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Descoberta de Drogas , Humanos , Metástase Neoplásica , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...