Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(11): e0106723, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37855618

RESUMO

IMPORTANCE: Many plant viruses are transmitted by insect vectors in a circulative manner. For efficient transmission, the entry of the virus from vector hemolymph into the primary salivary gland (PSG) is a step of paramount importance. Yet, vector components mediating virus entry into PSG remain barely characterized. Here, we demonstrate the role of clathrin-mediated endocytosis and early endosomes in begomovirus entry into whitefly PSG. Our findings unravel the key components involved in begomovirus transport within the whitefly body and transmission by their whitefly vectors and provide novel clues for blocking begomovirus transmission.


Assuntos
Begomovirus , Endocitose , Hemípteros , Animais , Begomovirus/fisiologia , Clatrina/metabolismo , Endossomos , Hemípteros/metabolismo , Hemípteros/virologia , Doenças das Plantas , Glândulas Salivares/metabolismo , Glândulas Salivares/virologia
3.
Sci Rep ; 9(1): 6568, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31024030

RESUMO

The 37 currently recognized Bemisia tabaci cryptic species are economically important species and contain both primary and secondary endosymbionts, but their diversity has never been mapped systematically across the group. To achieve this, PacBio sequencing of full-length bacterial 16S rRNA gene amplicons was carried out on 21 globally collected species in the B. tabaci complex, and two samples from B. afer were used here as outgroups. The microbial diversity was first explored across the major lineages of the whole group and 15 new putative bacterial sequences were observed. Extensive comparison of our results with previous endosymbiont diversity surveys which used PCR or multiplex 454 pyrosequencing platforms showed that the bacterial diversity was underestimated. To validate these new putative bacteria, one of them (Halomonas) was first confirmed to be present in MED B. tabaci using Hiseq2500 and FISH technologies. These results confirmed PacBio is a reliable and informative venue to reveal the bacterial diversity of insects. In addition, many new secondary endosymbiotic strains of Rickettsia and Arsenophonus were found, increasing the known diversity in these groups. For the previously described primary endosymbionts, one Portiera Operational Taxonomic Units (OTU) was shared by all B. tabaci species. The congruence of the B. tabaci-host and Portiera phylogenetic trees provides strong support for the hypothesis that primary endosymbionts co-speciated with their hosts. Likewise, a comparison of bacterial alpha diversities, Principal Coordinate Analysis, indistinct endosymbiotic communities harbored by different species and the co-divergence analyses suggest a lack of association between overall microbial diversity with cryptic species, further indicate that the secondary endosymbiont-mediated speciation is unlikely to have occurred in the B. tabaci species group.


Assuntos
Hemípteros/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/fisiologia , Filogenia , RNA Ribossômico 16S/genética , Rickettsia/classificação , Rickettsia/fisiologia , Análise de Sequência de DNA , Simbiose
4.
PLoS Pathog ; 14(1): e1006866, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29370296

RESUMO

Begomoviruses are exclusively transmitted by whiteflies in a persistent circulative manner and cause considerable economic losses to crop production worldwide. Previous studies have shown that begomoviruses accumulate in vesicle-like structures in whitefly midgut cells and that clathrin-mediated endocytosis is responsible for their internalization. However, the process by which begomoviruses are trafficked within whitefly midgut cells remains largely unknown. In this study, we investigated the roles of vesicle trafficking in the transport of Tomato yellow leaf curl virus (TYLCV), a begomovirus that has spread to over 50 countries and caused extensive damage to a range of important crops, within midgut cells of whitefly (Bemisia tabaci). By disrupting vesicle trafficking using RNA silencing and inhibitors, we demonstrated that the early steps of endosomal trafficking are important for the intracellular transport of TYLCV in the whitefly midgut. In addition, our data show that, unlike many animal viruses, TYCLV is trafficked within cells in a manner independent of recycling endosomes, late endosomes, lysosomes, the Golgi apparatus and the endoplasmic reticulum. Instead, our results suggest that TYLCV might be transported directly from early endosomes to the basal plasma membrane and released into the hemolymph. Silencing of the sorting nexin Snx12, which may be involved in membrane tubulation, resulted in fewer viral particles in hemolymph; this suggests that the tubular endosomal network may be involved in the transport of TYLCV. Our results also support a role for the endo-lysosomal system in viral degradation. We further showed that the functions of vector early endosomes and sorting nexin Snx12 are conserved in the transmission of several other begomoviruses. Overall, our data indicate the importance of early endosomes and the tubular endosomal network in begomovirus transmission.


Assuntos
Begomovirus/metabolismo , Sistema Digestório/virologia , Hemípteros/virologia , Insetos Vetores/virologia , Agrobacterium tumefaciens , Animais , Transporte Biológico , Hemípteros/metabolismo , Solanum lycopersicum/virologia
5.
Sci Rep ; 7(1): 12102, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28935950

RESUMO

The adaptation of herbivorous insects to various host plants facilitates the spread and outbreak of many important invasive pests, however, the molecular mechanisms that underneath this process are poorly understood. In the past three decades, two species of the whitefly Bemisia tabaci complex, Middle East-Asia Minor 1 and Mediterranean, have invaded many countries. Their rapid and widespread invasions are partially due to their ability to infest a wide range of host plants. In this study, we determined the transcriptome and phenotypic changes of one Mediterranean whitefly population during its adaptation to tobacco, an unsuitable host plant. After several generations on tobacco, whiteflies showed increased survival and fecundity. High-throughput RNA sequencing showed that genes involved in muscle contraction and carbohydrate metabolism were significantly up-regulated after adaptation. Whiteflies reared on tobacco were further found to have increased body volume and muscle content and be trapped by tobacco trichomes in a lower frequency. On the other hand, gene expression in endosymbionts of whitefly did not change significantly after adaptation, which is consistent with the lack of cis-regulatory element on endosymbiont genomes. Over all, our data suggested that higher body volume and strengthened muscle might help whiteflies overcome physical barriers and survive on tobacco.


Assuntos
Adaptação Fisiológica/genética , Perfilação da Expressão Gênica , Hemípteros/genética , Proteínas de Insetos/genética , Animais , Peso Corporal/genética , Fertilidade/genética , Ontologia Genética , Hemípteros/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Parasita , Região do Mediterrâneo , Proteínas Musculares/genética , Nicotiana/parasitologia , Tricomas/parasitologia
6.
Insect Sci ; 23(4): 531-42, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27273750

RESUMO

The whitefly, Bemisia tabaci, harbors the primary symbiont 'Candidatus Portiera aleyrodidarum' and a variety of secondary symbionts. Among these secondary symbionts, Rickettsia is the only one that can be detected both inside and outside the bacteriomes. Infection with Rickettsia has been reported to influence several aspects of the whitefly biology, such as fitness, sex ratio, virus transmission and resistance to pesticides. However, mechanisms underlying these differences remain unclear, largely due to the lack of genomic information of Rickettsia. In this study, we sequenced the genome of two Rickettsia strains isolated from the Middle East Asia Minor 1 (MEAM1) species of the B. tabaci complex in China and Israel. Both Rickettsia genomes were of high coding density and AT-rich, containing more than 1000 coding sequences, much larger than that of the coexisted primary symbiont, Portiera. Moreover, the two Rickettsia strains isolated from China and Israel shared most of the genes with 100% identity and only nine genes showed sequence differences. The phylogenetic analysis using orthologs shared in the genus, inferred the proximity of Rickettsia in MEAM1 and Rickettsia bellii. Functional analysis revealed that Rickettsia was unable to synthesize amino acids required for complementing the whitefly nutrition. Besides, a type IV secretion system and a number of virulence-related genes were detected in the Rickettsia genome. The presence of virulence-related genes might benefit the symbiotic life of the bacteria, and hint on potential effects of Rickettsia on whiteflies. The genome sequences of Rickettsia provided a basis for further understanding the function of Rickettsia in whiteflies.


Assuntos
Genoma Bacteriano , Hemípteros/microbiologia , Rickettsia/genética , Animais , China , DNA Bacteriano/genética , Israel , Filogenia , Especificidade da Espécie , Simbiose , Virulência/genética
7.
Ecol Evol ; 4(13): 2714-37, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25077022

RESUMO

Wolbachia is the most prevalent symbiont described in arthropods to date. Wolbachia can manipulate host reproduction, provide nutrition to insect hosts and protect insect hosts from pathogenic viruses. So far, 13 supergroups of Wolbachia have been identified. The whitefly Bemisia tabaci is a complex containing more than 28 morphologically indistinguishable cryptic species. Some cryptic species of this complex are invasive. In this study, we report a comprehensive survey of Wolbachia in B. tabaci and its relative B. afer from 1658 insects representing 54 populations across 13 provinces of China and one state of Australia. Based on the results of PCR or sequencing of the 16S rRNA gene, the overall rates of Wolbachia infection were 79.6% and 0.96% in the indigenous and invasive Bemisia whiteflies, respectively. We detected a new Wolbachia supergroup by sequencing five molecular marker genes including 16S rRNA, groEL, gltA, hcpA, and fbpA genes. Data showed that many protein-coding genes have limitations in detecting and classifying newly identified Wolbachia supergroups and thus raise a challenge to the known Wolbachia MLST standard analysis system. Besides, the other Wolbachia strains detected from whiteflies were clustered into supergroup B. Phylogenetic trees of whitefly mitochondrial cytochrome oxidase subunit I and Wolbachia multiple sequencing typing genes were not congruent. In addition, Wolbachia was also detected outside the special bacteriocytes in two cryptic species by fluorescence in situ hybridization, indicating the horizontal transmission of Wolbachia. Our results indicate that members of Wolbachia are far from well explored.

8.
BMC Genomics ; 15: 370, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24885120

RESUMO

BACKGROUND: The gut of phloem feeding insects is critical for nutrition uptake and xenobiotics degradation. However, partly due to its tiny size, genomic information for the gut of phloem feeding insects is limited. RESULTS: In this study, the gut transcriptomes of two species of invasive whiteflies in the Bemisia tabaci complex, Middle East Asia Minor 1 (MEAM1) and Mediterranean (MED), were analyzed using the Illumina sequencing. A total of 12,879 MEAM1 transcripts and 11,246 MED transcripts were annotated with a significant Blastx hit. In addition, 7,000 and 5,771 gut specific genes were respectively identified for MEAM1 and MED. Functional analyses on these gut specific genes demonstrated the important roles of gut in metabolism of insecticides and secondary plant chemicals. To reveal the molecular difference between guts of MEAM1 and MED, a comparison between gut transcriptomes of the two species was conducted and 3,910 pairs of orthologous genes were identified. Based on the ratio of nonsynonymous and synonymous substitutions, 15 genes were found evolving under positive selection. Many of those genes are predicted to be involved in metabolism and insecticide resistance. Furthermore, many genes related to detoxification were expressed at an elevated level in the gut of MED compared to MEAM1, which might be responsible for the MED's higher resistance to insecticides and environmental stresses. CONCLUSION: The sequencing of MED and MEAM1 gut transcriptomes and extensive comparisons of MEAM1 and MED gut transcripts provide substantial sequence information for revealing the role of gut in whiteflies.


Assuntos
Perfilação da Expressão Gênica , Hemípteros/genética , Mucosa Intestinal/metabolismo , Animais , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Resistência a Inseticidas/genética , Espécies Introduzidas , Redes e Vias Metabólicas/genética , Análise de Sequência de RNA , Transcriptoma
9.
PLoS One ; 9(4): e94477, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24722540

RESUMO

BACKGROUND: The whitefly, Bemisia tabaci, a notorious agricultural pest, has complex relationships with diverse microbes. The interactions of the whitefly with entomopathogens as well as its endosymbionts have received great attention, because of their potential importance in developing novel whitefly control technologies. To this end, a comprehensive understanding on the whitefly defense system is needed to further decipher those interactions. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a comprehensive investigation of the whitefly's defense responses to infection, via oral ingestion, of the pathogen, Pseudomonas aeruginosa, using RNA-seq technology. Compared to uninfected whiteflies, 6 and 24 hours post-infected whiteflies showed 1,348 and 1,888 differentially expressed genes, respectively. Functional analysis of the differentially expressed genes revealed that the mitogen associated protein kinase (MAPK) pathway was activated after P. aeruginosa infection. Three knottin-like antimicrobial peptide genes and several components of the humoral and cellular immune responses were also activated, indicating that key immune elements recognized in other insect species are also important for the response of B. tabaci to pathogens. Our data also suggest that intestinal stem cell mediated epithelium renewal might be an important component of the whitefly's defense against oral bacterial infection. In addition, we show stress responses to be an essential component of the defense system. CONCLUSIONS/SIGNIFICANCE: We identified for the first time the key immune-response elements utilized by B. tabaci against bacterial infection. This study provides a framework for future research into the complex interactions between whiteflies and microbes.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Miniproteínas Nó de Cistina/genética , Genoma de Inseto , Hemípteros/genética , Proteínas de Insetos/genética , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Miniproteínas Nó de Cistina/imunologia , Regulação da Expressão Gênica , Hemípteros/imunologia , Hemípteros/microbiologia , Interações Hospedeiro-Patógeno , Imunidade Celular , Imunidade Humoral , Proteínas de Insetos/imunologia , Longevidade/imunologia , Anotação de Sequência Molecular , Controle Biológico de Vetores , Pseudomonas aeruginosa/fisiologia , Estresse Fisiológico/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...