Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 28(44): 445002, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27604845

RESUMO

We experimentally and theoretically demonstrated an approach to achieve multispectral plasmon-induced transparency (PIT) by utilizing meta-molecules that consist of hyperfine terahertz meta-atoms. The feature size of such hyperfine meta-atoms is 400 nm, which is one order smaller than that of normal terahertz metamaterials. The hyperfine meta-atoms with close eigenfrequencies and narrow resonant responses introduce different metastable energy levels, which makes the multispectral PIT possible. In the triple PIT system, the slow light effect is further confirmed as the effective group delay at three transmission windows can reach 7.3 ps, 7.4 ps and 4.5 ps, respectively. Precisely controllable manipulation of the PIT peaks in such hyperfine meta-molecules was also proven. The new hyperfine planar design is not only suitable for high-integration applications, but also exhibits significant slow light effect, which has great potential in advanced multichannel optical information processing. Moreover, it reveals the possibility to construct hyperfine N-level energy systems by artificial hyperfine plasmonic structures, which brings a significant prospect for applications on miniaturized plasmonic devices.

2.
Sci Rep ; 6: 28764, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27357610

RESUMO

One of the key motivations in producing 3D structures has always been the realization of metamaterials with effective constituent properties that can be tuned in all propagation directions at various frequencies. Here, we report the investigation of spatially oriented "Nanograter" structures with orientation-dependent responses over a wide spectrum by focused-ion-beam based patterning and folding of thin film nanostructures. Au nano units of different shapes, standing along specifically designated orientations, were fabricated. Experimental measurements and simulation results show that such structures offer an additional degree of freedom for adjusting optical properties with the angle of inclination, in additional to the size of the structures. The response frequency can be varied in a wide range (8 µm-14 µm) by the spatial orientation (0°-180°) of the structures, transforming the response from magnetic into electric coupling. This may open up prospects for the fabrication of 3D nanostructures as optical interconnects, focusing elements and logic elements, moving toward the realization of 3D optical circuits.

3.
J Nanosci Nanotechnol ; 15(7): 5105-11, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26373087

RESUMO

Freestanding three-dimensional nanostructures have attracted intense attention for their potential application in novel electronic, optical, magnetic, biological and mechanical devices. However, controlled fabrication of highly-ordered, well-shaped and freestanding core-shell hetero-structures in large scale cost-effectively is still a challenge. Here we present the constructing of freestanding hetero-structures by taking advantages of lateral re-deposition, a phenomenon that occurred during plasma-matter interaction and usually to be minimized/avoided in conventional device fabrication. Various freestanding nanowires were irradiated under optimized conditions, in that upon etching, the sputtered species from the supporting substrates are re-deposited laterally onto the core material, mainly through plasma-phase interaction to form complex core-shell structures. Factors, including the supporting substrate, plasma power, irradiation time and gas flow rate, were used to tune the properties of the desired structures. Pencil-like, conic and wing-shape free-standing hetero-structures have been formed with controllable growth rate of sub-nanometer per minute across the width of the structure. The related mechanism was proposed. Our results indicate that such technique might be a potential approach for the fabrication of high aspect-ratio freestanding functional core-shell structures to construct mechanical, optical, biological and electrical devices.

4.
Nanoscale ; 7(17): 7651-8, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25833041

RESUMO

Thickness, homogeneity and coverage of the surface passivation layer on Si anodes for Li-ion batteries have decisive influences on their cyclic performance and coulombic efficiency, but related information is difficult to obtain, especially during cycling. In this work, a well-defined silicon nanocone (SNC) on silicon wafer sample has been fabricated as a model electrode in lithium ion batteries to investigate the growth of surface species on the SNC electrode during cycling using ex situ scanning electronic microscopy. It is observed that an extra 5 µm thick layer covers the top of the SNCs after 25 cycles at 0.1 C. This top layer has been proven to be a solid electrolyte interphase (SEI) layer by designing a solid lithium battery. It is noticed that the SEI layer is much thinner at a high rate of 1 C. The cyclic performance of the SNCs at 1 C looks much better than that of the same electrode at 0.1 C in the half cell. Our findings clearly demonstrate that the formation of the thick SEI on the naked nanostructured Si anode during low rate cycling is a serious problem for practical applications. An in depth understanding of this problem may provide valuable guidance in designing Si-based anode materials.

5.
Langmuir ; 30(42): 12647-53, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25280079

RESUMO

Control of the wetting property of diamond surface has been a challenge because of its maximal hardness and good chemical inertness. In this work, the micro/nanoarray structures etched into diamond film surfaces by a maskless plasma method are shown to fix a surface's wettability characteristics, and this means that the change in morphology is able to modulate the wettability of a diamond film from weakly hydrophilic to either superhydrophilic or superhydrophobic. It can be seen that the etched diamond surface with a mushroom-shaped array is superhydrophobic following the Cassie mode, whereas the etched surface with nanocone arrays is superhydrophilic in accordance with the hemiwicking mechnism. In addition, the difference in cone densities of superhydrophilic nanocone surfaces has a significant effect on water spreading, which is mainly derived from different driving forces. This low-cost and convenient means of altering the wetting properties of diamond surfaces can be further applied to underlying wetting phenomena and expand the applications of diamond in various fields.


Assuntos
Diamante/química , Membranas Artificiais , Molhabilidade
6.
Appl Opt ; 52(20): 4877-83, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23852202

RESUMO

Surface-enhanced electromagnetic response in the resonant regions of split-ring resonators offers a sensitive way to probe the surface dipoles formed by alkanethiol molecules with a terahertz wave by a differential transmission (DT) interrogation method. The DT signal mainly comes from the interaction between alkanethiols and metamaterials by electron transfer and/or the variation of the dielectric constant. The Lorentz model is used to demonstrate the principle of DT interrogation theoretically, which suggests the variation of both frequency and damping of resonance can be captured cooperatively. This method has been employed to experimentally demonstrate the sensing feasibility for the chain length dependence of the alkanethiol molecules. Numerical simulations confirm that the enhancement is large at the gap and corner regions of this kind of metamaterials.

7.
Nanoscale ; 4(20): 6383-8, 2012 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22951543

RESUMO

Graphene sheet is expected to be a highly efficient field emitter due to its unique electrical properties and open surface with sharp edges. However, it is still a tremendous technical challenge to grow and align a graphene sheet in one particular direction to protrude its sharp edges for good field emission. Here, we report an ideal graphene field emitter of flower-like graphene nanosheets grown on a silicon nanocone array, wherein nanocone array guides the alignment of vertical nanosheets and produces high-density sharp edge protrusions on the conical tip. We observe high performance and stable field emission with low turn-on fields from floral-clustered graphene nanosheets. Protrusive sharp edges on the nanocone tip and optimized spacing between clusters both appear to locally enhance the electric field and dramatically increase field emission. Our new graphene emitter design provides a robust approach to the prospect for development of practical electron sources and advanced devices based on graphene field emitters.

8.
Sci Rep ; 2: 511, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22803004

RESUMO

Nanostructured surface possessing ultrahigh adhesion like "gecko foot" or "rose petal" can offer more opportunities for bionic application. We grow flower-like few-layer graphene on silicon nanocone arrays to form graphene nanoclusters, showing robust adhesion. Their contact angle (CA) is 164° with a hysteresis CA of 155° and adhesive force for a 5 µL water droplet is about 254 µN that is far larger than present reported results. We bring experimental evidences that this great adhesion depends on large-area plentiful edges of graphene nanosheets tuned by conical nanostructure and intrinsic wetting features of graphene. Such new hierarchical few-layer graphene nanostructure provides a feasible strategy to understand the ultra-adhesive mechanism of the "gecko effect" or "rose effect" and enhance the wettability of graphene for many practical applications.

9.
Nanotechnology ; 23(27): 275503, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22706679

RESUMO

Metamaterials (MMs) have shown huge potential in sensing applications by detecting their optical properties, which can be designed to operate at frequencies from visible to mid-IR. Here we constructed complementary split ring resonator (CSRR) based metamaterials in nanoscale with unit length of 100 nm and slit width of 30 nm, and observed obvious responses in the visible waveband from 600 to 900 nm. These visible responses show a good tunability with the structure's geometry, and are well suited for dielectric detection. We demonstrated good refractive index sensing of CSRR based metamaterials in the visible region under both 0° and 90° polarized incidence. Our results extend the study of CSRR based metamaterials to the visible region, which is expected to deepen the understanding of the response mechanism of CSRRs and benefit their sensing applications in the visible region.


Assuntos
Nanopartículas/química , Nanopartículas/ultraestrutura , Nanotecnologia/instrumentação , Refratometria/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
10.
Nanotechnology ; 22(50): 505601, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22108293

RESUMO

Vertically aligned single-crystal SnO(2) nanoshuttle arrays with uniform morphology and a relatively high aspect ratio were synthesized by a simple hot-wall chemical vapor deposition (CVD) method. It was found that regulating the growth temperature gradient could change the shape of the SnO(2) nanostructure from nanoshuttles to nanochisels and nanoneedles, and a self-catalyzing growth process was responsible for tunable morphologies of SnO(2) nanostructures. The as-synthesized SnO(2) nanoshuttles showed ultrahigh flexibility and strong toughness with a large elastic strain of ∼ 6.2, which is much higher than reported for Si and ZnO nanowire as well as most crystalline metallic materials. The field emitter fabricated using SnO(2) nanoshuttle arrays has a low turn-on electric field of around 0.6 V µm(-1), and a high field emission current density of above 10 mA cm(-2), which is comparable with the highest emission current density of carbon nanotube and nanowire field emitters.

11.
Nanotechnology ; 22(39): 395301, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21891843

RESUMO

A novel approach based on the Poisson spot effect in a conventional optical lithography system is presented for fabricating large-scale ordered ring patterns at low cost, in which the pattern geometries are tuned by controlling the exposure dose and deliberate design of the mask patterns. Following this by cryogenic deep etching, the ring patterns are transferred into Si substrates, resulting in various vertical tubular Si array structures. Microscopic analysis indicates that the as-fabricated Si microtubes have smooth interior and exterior surfaces that are uniform in size, shape and wall-thickness, which exhibit potential applications as electronic, biological and medical devices.


Assuntos
Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Silício/química , Nanoestruturas/química , Propriedades de Superfície
12.
J Nanosci Nanotechnol ; 10(11): 7138-41, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21137882

RESUMO

In this paper, we report the fabrication of permalloy nanocontact structures with greatly improved surface and edge smoothness. Magnetic sputtering and thermal evaporation were used for metal film deposition, and lift-off and dry etching techniques were employed for nanocontact structure patterning. The compositional properties of the resulting nanocontacts were investigated using energy dispersive analysis of X-ray (EDAX). Atom force microscope and scanning electron microscope were used for morphological characterisation. We found that high quality permalloy nanocontact structures can be obtained by using the combination of thermal evaporation and lift-off with optimised processing parameters; meanwhile, in the case of depositing metal films using magnetic sputtering, dry etching technique rather than lift-off was used for improved surface morphology of the nanostructures.

13.
J Plant Res ; 117(6): 473-6, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15538655

RESUMO

Recent studies of glucose (Glc) sensing and signaling have revealed that Glc acts as a critical signaling molecule in higher plants. Several Glc sensing-defective Arabidopsis mutants have been characterized in detail, and the corresponding genes encoding Glc-signaling proteins have been isolated. However, the full complexity of Glc signaling in higher plants is not yet fully understood. Here, we report the identification and characterization of a new Glc-insensitive mutant, gaolaozhuangren2 (glz2), which was isolated from transposon mutagenesis experiments in Arabidopsis. In addition to its insensitivity to Glc, the glz2 plant exhibits several developmental defects such as short stature with reduced apical dominance, short roots, small and dark-green leaves, late flowering and female sterility. Treatment with 4% Glc blocked expression of the OE33 gene in wild-type plants, whereas expression of this gene was unchanged in the glz2 mutant plants. Taken together, our results suggest that the GLZ2 gene is required for normal glucose response and development of Arabidopsis.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Glucose/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...