Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 240(2): 784-801, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37615219

RESUMO

The role of cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 (CAP) superfamily proteins in the innate immune responses of mammals is well characterized. However, the biological function of CAP superfamily proteins in plant-microbe interactions is poorly understood. We used proteomics and transcriptome analyses to dissect the apoplastic effectors secreted by the oomycete Phytophthora sojae during early infection of soybean leaves. By transiently expressing these effectors in Nicotiana benthamiana, we identified PsCAP1, a novel type of secreted CAP protein that triggers immune responses in multiple solanaceous plants including N. benthamiana. This secreted CAP protein is conserved among oomycetes, and multiple PsCAP1 homologs can be recognized by N. benthamiana. PsCAP1-triggered immune responses depend on the N-terminal immunogenic fragment (aa 27-151). Pretreatment of N. benthamiana with PsCAP1 or the immunogenic fragment increases plant resistance against Phytophthora. The recognition of PsCAP1 and different homologs requires the leucine-rich repeat receptor-like protein RCAP1, which associates with two central receptor-like kinases BRI1-associated receptor kinase 1 (BAK1) and suppressor of BIR1-1 (SOBIR1) in planta. These findings suggest that the CAP-type apoplastic effectors act as an important player in plant-microbe interactions that can be perceived by plant membrane-localized receptor to activate plant resistance.


Assuntos
Proteínas de Repetições Ricas em Leucina , Phytophthora , Animais , Nicotiana/genética , Leucina , Imunidade Inata , Mamíferos
2.
Nat Commun ; 14(1): 3857, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37385996

RESUMO

Phytopathogenic fungi secrete chitin deacetylase (CDA) to escape the host's immunological defense during infection. Here, we showed that the deacetylation activity of CDA toward chitin is essential for fungal virulence. Five crystal structures of two representative and phylogenetically distant phytopathogenic fungal CDAs, VdPDA1 from Verticillium dahliae and Pst_13661 from Puccinia striiformis f. sp. tritici, were obtained in ligand-free and inhibitor-bound forms. These structures suggested that both CDAs have an identical substrate-binding pocket and an Asp-His-His triad for coordinating a transition metal ion. Based on the structural identities, four compounds with a benzohydroxamic acid (BHA) moiety were obtained as phytopathogenic fungal CDA inhibitors. BHA exhibited high effectiveness in attenuating fungal diseases in wheat, soybean, and cotton. Our findings revealed that phytopathogenic fungal CDAs share common structural features, and provided BHA as a lead compound for the design of CDA inhibitors aimed at attenuating crop fungal diseases.


Assuntos
Inibição Psicológica , Micoses , Humanos , Amidoidrolases , Quitina , Cladribina , Citidina Desaminase
3.
Plant Cell ; 35(4): 1186-1201, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36625683

RESUMO

Elicitins are a large family of secreted proteins in Phytophthora. Clade 1 elicitins were identified decades ago as potent elicitors of immune responses in Nicotiana species, but the mechanisms underlying elicitin recognition are largely unknown. Here we identified an elicitin receptor in Nicotiana benthamiana that we named REL for Responsive to ELicitins. REL is a receptor-like protein (RLP) with an extracellular leucine-rich repeat (LRR) domain that mediates Phytophthora resistance by binding elicitins. Silencing or knocking out REL in N. benthamiana abolished elicitin-triggered cell death and immune responses. Domain deletion and site-directed mutagenesis revealed that the island domain (ID) located within the LRR domain of REL is crucial for elicitin recognition. In addition, sequence polymorphism in the ID underpins the genetic diversity of REL homologs in various Nicotiana species in elicitin recognition and binding. Remarkably, REL is phylogenetically distant from the elicitin response (ELR) protein, an LRR-RLP that was previously identified in the wild potato species Solanum microdontum and REL and ELR differ in the way they bind and recognize elicitins. Our findings provide insights into the molecular basis of plant innate immunity and highlight a convergent evolution of immune receptors towards perceiving the same elicitor.


Assuntos
Phytophthora , Solanum , Proteínas/metabolismo , Plantas/metabolismo , Phytophthora/genética , Phytophthora/metabolismo , Nicotiana/metabolismo , Solanum/metabolismo , Doenças das Plantas
4.
J Agric Food Chem ; 70(44): 14140-14147, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36315898

RESUMO

The oxysterol-binding protein inhibitor oxathiapiprolin is a new fungicide for controlling oomycetes diseases. Besides, laboratory mutagenesis oxathiapiprolin-resistance among phytopathogenic oomycetes in the field remains unknown. Here, the sensitivity of 97 P. colocasiae isolates to oxathiapiprolin was examined that were collected between 2011 and 2016. We obtained a baseline sensitivity with a mean EC50 value of 5.2639 × 10-4 µg mL-1. We showed that 6/32 isolates collected in Fujian Province from 2019 to 2020 were resistant to oxathiapiprolin without a significant fitness penalty on sporulation, vegetative growth, and virulence of the field isolates. The oxathiapiprolin resistance field isolates contained the point mutation glycine to valine at 699 in PcoORP1. The point mutation G699V was verified to confer resistance of P. colocasiae to oxathiapiprolin using the CRISPR/Cas9 system. The mutation G699V decreased the binding affinity between oxathiapiprolin and PcoORP1. These results will improve our understanding of the mechanism of P. colocasiae resistance to oxathiapiprolin under field conditions.


Assuntos
Fungicidas Industriais , Phytophthora , Mutação Puntual , Doenças das Plantas , Hidrocarbonetos Fluorados/farmacologia , Fungicidas Industriais/farmacologia
5.
Nature ; 610(7931): 335-342, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36131021

RESUMO

Plants rely on cell-surface-localized pattern recognition receptors to detect pathogen- or host-derived danger signals and trigger an immune response1-6. Receptor-like proteins (RLPs) with a leucine-rich repeat (LRR) ectodomain constitute a subgroup of pattern recognition receptors and play a critical role in plant immunity1-3. Mechanisms underlying ligand recognition and activation of LRR-RLPs remain elusive. Here we report a crystal structure of the LRR-RLP RXEG1 from Nicotiana benthamiana that recognizes XEG1 xyloglucanase from the pathogen Phytophthora sojae. The structure reveals that specific XEG1 recognition is predominantly mediated by an amino-terminal and a carboxy-terminal loop-out region (RXEG1(ID)) of RXEG1. The two loops bind to the active-site groove of XEG1, inhibiting its enzymatic activity and suppressing Phytophthora infection of N. benthamiana. Binding of XEG1 promotes association of RXEG1(LRR) with the LRR-type co-receptor BAK1 through RXEG1(ID) and the last four conserved LRRs to trigger RXEG1-mediated immune responses. Comparison of the structures of apo-RXEG1(LRR), XEG1-RXEG1(LRR) and XEG1-BAK1-RXEG1(LRR) shows that binding of XEG1 induces conformational changes in the N-terminal region of RXEG1(ID) and enhances structural flexibility of the BAK1-associating regions of RXEG1(LRR). These changes allow fold switching of RXEG1(ID) for recruitment of BAK1(LRR). Our data reveal a conserved mechanism of ligand-induced heterodimerization of an LRR-RLP with BAK1 and suggest a dual function for the LRR-RLP in plant immunity.


Assuntos
Glicosídeo Hidrolases , Phytophthora , Imunidade Vegetal , Proteínas de Plantas , Receptores de Reconhecimento de Padrão , Motivos de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Glicosídeo Hidrolases/metabolismo , Leucina/metabolismo , Ligantes , Phytophthora/enzimologia , Phytophthora/imunologia , Phytophthora/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Multimerização Proteica , Receptores de Reconhecimento de Padrão/química , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Nicotiana/química , Nicotiana/metabolismo
6.
Plant J ; 108(1): 67-80, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34374485

RESUMO

Plants deploy various immune receptors to recognize pathogen-derived extracellular signals and subsequently activate the downstream defense response. Recently, increasing evidence indicates that the endoplasmic reticulum (ER) plays a part in the plant defense response, known as ER stress-mediated immunity (ERSI), that halts pathogen infection. However, the mechanism for the ER stress response to signals of pathogen infection remains unclear. Here, we characterized the ER stress response regulator NAC089, which was previously reported to positively regulate programed cell death (PCD), functioning as an ERSI regulator. NAC089 translocated from the ER to the nucleus via the Golgi in response to Phytophthora capsici culture filtrate (CF), which is a mixture of pathogen-associated molecular patterns (PAMPs). Plasma membrane localized co-receptor BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1) was required for the CF-mediated translocation of NAC089. The nuclear localization of NAC089, determined by the NAC domain, was essential for immune activation and PCD. Furthermore, NAC089 positively contributed to host resistance against the oomycete pathogen P. capsici and the bacteria pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. We also proved that NAC089-mediated immunity is conserved in Nicotiana benthamiana. Together, we found that PAMP signaling induces the activation of ER stress in plants, and that NAC089 is required for ERSI and plant resistance against pathogens.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Phytophthora/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Pseudomonas syringae/fisiologia , Fatores de Transcrição/metabolismo , Apoptose , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Resistência à Doença , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Complexo de Golgi/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Doenças das Plantas/microbiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Fatores de Transcrição/genética
7.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658365

RESUMO

Oomycete pathogens such as Phytophthora secrete a repertoire of effectors into host cells to manipulate host immunity and benefit infection. In this study, we found that an RxLR effector, Avr1d, promoted Phytophthora sojae infection in soybean hairy roots. Using a yeast two-hybrid screen, we identified the soybean E3 ubiquitin ligase GmPUB13 as a host target for Avr1d. By coimmunoprecipitation (Co-IP), gel infiltration, and isothermal titration calorimetry (ITC) assays, we confirmed that Avr1d interacts with GmPUB13 both in vivo and in vitro. Furthermore, we found that Avr1d inhibits the E3 ligase activity of GmPUB13. The crystal structure Avr1d in complex with GmPUB13 was solved and revealed that Avr1d occupies the binding site for E2 ubiquitin conjugating enzyme on GmPUB13. In line with this, Avr1d competed with E2 ubiquitin conjugating enzymes for GmPUB13 binding in vitro, thereby decreasing the E3 ligase activity of GmPUB13. Meanwhile, we found that inactivation of the ubiquitin ligase activity of GmPUB13 stabilized GmPUB13 by blocking GmPUB13 degradation. Silencing of GmPUB13 in soybean hairy roots decreased P. sojae infection, suggesting that GmPUB13 acts as a susceptibility factor. Altogether, this study highlights a virulence mechanism of Phytophthora effectors, by which Avr1d competes with E2 for GmPUB13 binding to repress the GmPUB13 E3 ligase activity and thereby stabilizing the susceptibility factor GmPUB13 to facilitate Phytophthora infection. This study unravels the structural basis for modulation of host targets by Phytophthora effectors and will be instrumental for boosting plant resistance breeding.


Assuntos
Complexos Multiproteicos/química , Phytophthora/química , Ubiquitina-Proteína Ligases/química , Complexos Multiproteicos/metabolismo , Phytophthora/metabolismo , Doenças das Plantas/microbiologia , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(44): 27685-27693, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33082226

RESUMO

Hosts and pathogens are engaged in a continuous evolutionary struggle for physiological dominance. A major site of this struggle is the apoplast. In Phytophthora sojae-soybean interactions, PsXEG1, a pathogen-secreted apoplastic endoglucanase, is a key focal point of this struggle, and the subject of two layers of host defense and pathogen counterdefense. Here, we show that N-glycosylation of PsXEG1 represents an additional layer of this coevolutionary struggle, protecting PsXEG1 against a host apoplastic aspartic protease, GmAP5, that specifically targets PsXEG1. This posttranslational modification also attenuated binding by the previously described host inhibitor, GmGIP1. N-glycosylation of PsXEG1 at N174 and N190 inhibited binding and degradation by GmAP5 and was essential for PsXEG1's full virulence contribution, except in GmAP5-silenced soybeans. Silencing of GmAP5 reduced soybean resistance against WT P. sojae but not against PsXEG1 deletion strains of P. sojae. The crucial role of N-glycosylation within the three layers of defense and counterdefense centered on PsXEG1 highlight the critical importance of this conserved apoplastic effector and its posttranslational modification in Phytophthora-host coevolutionary conflict.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Celulase/metabolismo , Glycine max/microbiologia , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Ácido Aspártico Endopeptidases/genética , Celulase/genética , Resistência à Doença/genética , Técnicas de Silenciamento de Genes , Glicosilação , Interações Hospedeiro-Patógeno/genética , Phytophthora/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteólise , Glycine max/enzimologia , Glycine max/genética , Virulência
9.
Mol Plant ; 12(4): 552-564, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30703565

RESUMO

Plants secrete defense molecules into the extracellular space (the apoplast) to combat attacking microbes. However, the mechanisms by which successful pathogens subvert plant apoplastic immunity remain poorly understood. In this study, we show that PsAvh240, a membrane-localized effector of the soybean pathogen Phytophthora sojae, promotes P. sojae infection in soybean hairy roots. We found that PsAvh240 interacts with the soybean-resistant aspartic protease GmAP1 in planta and suppresses the secretion of GmAP1 into the apoplast. By solving its crystal structure we revealed that PsAvh240 contain six α helices and two WY motifs. The first two α helices of PsAvh240 are responsible for its plasma membrane-localization and are required for PsAvh240's interaction with GmAP1. The second WY motifs of two PsAvh240 molecules form a handshake arrangement resulting in a handshake-like dimer. This dimerization is required for the effector's repression of GmAP1 secretion. Taken together, these data reveal that PsAvh240 localizes at the plasma membrane to interfere with GmAP1 secretion, which represents an effective mechanism by which effector proteins suppress plant apoplastic immunity.


Assuntos
Ácido Aspártico Proteases/metabolismo , Glycine max/enzimologia , Glycine max/microbiologia , Interações Hospedeiro-Patógeno , Phytophthora/fisiologia , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Membrana Celular/metabolismo , Modelos Moleculares , Phytophthora/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Multimerização Proteica , Estrutura Quaternária de Proteína , Transporte Proteico , Glycine max/citologia , Glycine max/imunologia , Fatores de Virulência/química
10.
Plant J ; 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29775494

RESUMO

Exploring the regulatory mechanism played by endogenous rice miRNAs in defense responses against the blast disease is of great significance in both resistant variety breeding and disease control management. We identified rice defense-related miRNAs by comparing rice miRNA expression patterns before and after Magnaporthe oryzae strain Guy11 infection. We discovered that osa-miR164a expression reduced upon Guy11 infection at both early and late stages, which was perfectly associated with the induced expression of its target gene, OsNAC60. OsNAC60 encodes a transcription factor, over-expression of which enhanced defense responses, such as increased programmed cell death, greater ion leakage, more reactive oxygen species accumulation and callose deposition, and upregulation of defense-related genes. By using transgenic rice over-expressing osa-miR164a, and a transposon insertion mutant of OsNAC60, we showed that when the miR164a/OsNAC60 regulatory module was dysfunctional, rice developed significant susceptibility to Guy11 infection. The co-expression of OsNAC60 and osa-miR164a abolished the OsNAC60 activity, but not its synonymous mutant. We further validated that this regulatory module is conserved in plant resistance to multiple plant diseases, such as the rice sheath blight, tomato late blight, and soybean root and stem rot diseases. Our results demonstrate that the miR164a/OsNAC60 regulatory module manipulates rice defense responses to M. oryzae infection. This discovery is of great potential for resistant variety breeding and disease control to a broad spectrum of pathogens in the future.

11.
Bio Protoc ; 8(20): e3045, 2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34532519

RESUMO

Phytophthora sojae, the causal agent of soybean root and stem rot, is responsible for enormous economic losses in soybean production. P. sojae secrets various effectors to reprogram host immunity. The plant apoplastic space is a major battleground in plant-pathogen interactions. Here we describe a protocol for purification and isolation of secreted proteins from P. sojae, including precipitation of secreted proteins from P. sojae culture filtrate, chromatographic purification of the secreted proteins and analysis of the proteins by Mass spectrometry. With this protocol, it will be easier to identify potential apoplastic effectors in Phytophthora and will benefit our understanding of plant-microbe interactions.

12.
Science ; 355(6326): 710-714, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28082413

RESUMO

The extracellular space (apoplast) of plant tissue represents a critical battleground between plants and attacking microbes. Here we show that a pathogen-secreted apoplastic xyloglucan-specific endoglucanase, PsXEG1, is a focus of this struggle in the Phytophthora sojae-soybean interaction. We show that soybean produces an apoplastic glucanase inhibitor protein, GmGIP1, that binds to PsXEG1 to block its contribution to virulence. P. sojae, however, secretes a paralogous PsXEG1-like protein, PsXLP1, that has lost enzyme activity but binds to GmGIP1 more tightly than does PsXEG1, thus freeing PsXEG1 to support P. sojae infection. The gene pair encoding PsXEG1 and PsXLP1 is conserved in many Phytophthora species, and the P. parasitica orthologs PpXEG1 and PpXLP1 have similar functions. Thus, this apoplastic decoy strategy may be widely used in Phytophthora pathosystems.


Assuntos
Celulase/antagonistas & inibidores , Celulase/metabolismo , Glycine max/enzimologia , Glycine max/parasitologia , Interações Hospedeiro-Patógeno , Phytophthora/enzimologia , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Celulase/genética , Espaço Extracelular/parasitologia , Glucanos/metabolismo , Phytophthora/genética , Phytophthora/patogenicidade , Proteínas de Plantas/genética , Ligação Proteica , Glycine max/genética , Virulência , Xilanos/metabolismo
13.
PLoS Pathog ; 11(8): e1005139, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26317500

RESUMO

Plant pathogens secrete an arsenal of effector proteins to impair host immunity. Some effectors possess enzymatic activities that can modify their host targets. Previously, we demonstrated that a Phytophthora sojae RXLR effector Avr3b acts as a Nudix hydrolase when expressed in planta; and this enzymatic activity is required for full virulence of P. sojae strain P6497 in soybean (Glycine max). Interestingly, recombinant Avr3b produced by E. coli does not have the hydrolase activity unless it was incubated with plant protein extracts. Here, we report the activation of Avr3b by a prolyl-peptidyl isomerase (PPIase), cyclophilin, in plant cells. Avr3b directly interacts with soybean cyclophilin GmCYP1, which activates the hydrolase activity of Avr3b in a PPIase activity-dependent manner. Avr3b contains a putative Glycine-Proline (GP) motif; which is known to confer cyclophilin-binding in other protein substrates. Substitution of the Proline (P132) in the putative GP motif impaired the interaction of Avr3b with GmCYP1; as a result, the mutant Avr3bP132A can no longer be activated by GmCYP1, and is also unable to promote Phytophthora infection. Avr3b elicits hypersensitive response (HR) in soybean cultivars producing the resistance protein Rps3b, but Avr3bP132A lost its ability to trigger HR. Furthermore, silencing of GmCYP1 rendered reduced cell death triggered by Avr3b, suggesting that GmCYP1-mediated Avr3b maturation is also required for Rps3b recognition. Finally, cyclophilins of Nicotiana benthamiana can also interact with Avr3b and activate its enzymatic activity. Overall, our results demonstrate that cyclophilin is a "helper" that activates the enzymatic activity of Avr3b after it is delivered into plant cells; as such, cyclophilin is required for the avirulence and virulence functions of Avr3b.


Assuntos
Ciclofilinas/imunologia , Glycine max/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Phytophthora/patogenicidade , Doenças das Plantas/imunologia , Pirofosfatases/imunologia , Sequência de Aminoácidos , Western Blotting , Ciclofilinas/metabolismo , Imunoprecipitação , Dados de Sequência Molecular , Phytophthora/imunologia , Phytophthora/metabolismo , Doenças das Plantas/parasitologia , Imunidade Vegetal/fisiologia , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Pirofosfatases/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Virulência , Nudix Hidrolases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...