Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 44(11): 6248-6256, 2023 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-37973107

RESUMO

In field conditions, a micro-aerobic layer with 1 cm thickness exists on the surface layer of paddy soil owing to the diffusion of dissolved oxygen via flooding water. However, the particularity of carbon and nitrogen transformation in this specific soil layer is not clear. A typical subtropical paddy soil was collected and incubated with13C-labelled rice straw for 100 days. The responses of exogenous fresh organic carbon(13C-rice straw) and original soil organic carbon mineralization to nitrogen fertilizer addition[(NH4)2SO4]in the micro-aerobic layer(0-1 cm) and anaerobic layer(1-5 cm) of paddy soil and their microbial processes were analyzed based on the analysis of 13C incorporation into phospholipid fatty acid(13C-PLFAs). Nitrogen addition promoted the total CO2 and 13C-CO2 emission from paddy soil by 11.4% and 12.3%, respectively. At the end of incubation, with the addition of nitrogen, the total soil organic carbon (SOC) and13C-recovery rate from rice straw in the anaerobic layer were 2.4% and 9.2% lower than those in the corresponding micro-aerobic layer, respectively. At the early stage(5 days), nitrogen addition increased the total microbial PLFAs in the anaerobic layer with a consistent response of bacterial and fungal PLFAs. However, there was no significant effect from nitrogen on microbial abundance in the micro-aerobic layer. Nitrogen addition had no significant impact on the abundance of total 13C-PLFAs in the micro-aerobic and anaerobic layers, but the abundance of 13C-PLFAs for bacteria and fungi in the micro-aerobic layer was decreased dramatically. At the late stage(100 days), the effect of nitrogen addition on microbial PLFAs was consistent with that at the early stage. The abundances of total, bacterial, and fungal 13C-PLFAs were remarkably increased in the anaerobic layer. However, the abundance of 13C-PLFAs in the micro-aerobic layer showed no significant response to nitrogen addition. During the incubation, the content of NH4+-N in the anaerobic soil layer was higher than that in the micro-aerobic soil layer. This indicates that nitrogen addition increased microbial activity in the anaerobic soil layer caused by the higher NH4+-N concentration, as majority of microorganisms preferred to use NH4+-N. Consequently, the microbial utilization and decomposition of organic carbon in the anaerobic soil layer were accelerated. By contrast, richer available N existed in the form of NO3--N in the micro-aerobic soil layer owing to the ammoxidation process. Thus, the shortage of NO3--N preference microorganisms in the paddy soil environment prohibited the microbial metabolism of organic carbon in the micro-aerobic layer. As a whole, nitrogen fertilization enhanced organic carbon loss via microbial mineralization in paddy soil with a weaker effect in the micro-aerobic layer than that in the anaerobic layer, indicating the limited microbial metabolic activity in the surface micro-aerobic layer could protect the organic carbon stabilization in paddy soil. This study emphasizes the heterogeneity of paddy soil and its significant particularity of carbon and nitrogen transformation in micro-aerobic layers. Consequently, this study has implications for optimizing the forms and method for the application of nitrogen fertilizer in paddy cropping systems.


Assuntos
Oryza , Solo , Carbono/análise , Agricultura/métodos , Nitrogênio/análise , Fertilizantes/análise , Anaerobiose , Dióxido de Carbono/análise , Microbiologia do Solo , Bactérias
2.
Glob Chang Biol ; 27(11): 2478-2490, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33713528

RESUMO

Paddy soils make up the largest anthropogenic wetlands on earth, and are characterized by a prominent potential for organic carbon (C) sequestration. By quantifying the plant- and microbial-derived C in soils across four climate zones, we identified that organic C accrual is achieved via contrasting pathways in paddy and upland soils. Paddies are 39%-127% more efficient in soil organic C (SOC) sequestration than their adjacent upland counterparts, with greater differences in warmer than cooler climates. Upland soils are more replenished by microbial-derived C, whereas paddy soils are enriched with a greater proportion of plant-derived C, because of the retarded microbial decomposition under anaerobic conditions induced by the flooding of paddies. Under both land-use types, the maximal contribution of plant residues to SOC is at intermediate mean annual temperature (15-20°C), neutral soil (pH~7.3), and low clay/sand ratio. By contrast, high temperature (~24°C), low soil pH (~5), and large clay/sand ratio are favorable for strengthening the contribution of microbial necromass. The greater contribution of microbial necromass to SOC in waterlogged paddies in warmer climates is likely due to the fast anabolism from bacteria, whereas fungi are unlikely to be involved as they are aerobic. In the scenario of land-use conversion from paddy to upland, a total of 504 Tg C may be lost as CO2 from paddy soils (0-15 cm) solely in eastern China, with 90% released from the less protected plant-derived C. Hence, preserving paddy systems and other anthropogenic wetlands and increasing their C storage through sustainable management are critical for maintaining global soil C stock and mitigating climate change.


Assuntos
Sequestro de Carbono , Oryza , Agricultura , Carbono/análise , China , Solo
3.
Huan Jing Ke Xue ; 41(3): 1466-1473, 2020 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608650

RESUMO

Land use type exerts important influences on soil organic carbon (SOC) and its fractions, and determines the stability of the carbon pool. Taking woodland as a reference, the content of SOC and its labile fractions[dissolved organic carbon (DOC), microbial biomass carbon (MBC), and particulate organic carbon (POC)] and non-labile fractions[mineral-associated organic carbon (MAOC)] in upland and paddy surface soils in hilly red soil regions were determined to explore the responses of SOC fractions to land use type. The results showed that the contents of SOC, MBC, POC, and MAOC ranked highest in paddy compared with upland and woodland. DOC content in woodland was significantly higher than in upland and paddy (P<0.001). The proportion of each SOC fraction, i.e. DOC/SOC, MBC/SOC, POC/SOC, and MAOC/SOC, was in the range of 0.22%-0.93%, 1.62%-2.70%, 31.08%-40.00%, and 43.22%-56.82%, respectively. The contents of labile fractions (MBC and POC) and their proportions (MBC/SOC and POC/SOC) were in the order of paddy > woodland > upland. MAOC content ranked the highest in paddy but the lowest in upland, while MAOC/SOC exhibited the opposite trend. The correlation suggested that the labile fractions (MBC and POC) and inert fraction (MAOC) were significantly positively correlated with SOC (P<0.001) in the three land use types, while no significant correlations were found between DOC and SOC and its fractions (P>0.05). There was a significant positive correlation between POC and MBC in upland and woodland (P<0.001). POC was significantly positively correlated with MAOC in the three land use types (P<0.001). MAOC and MBC in paddy and upland were significantly positively correlated (P<0.001). Therefore, compared with upland and woodland, SOC in paddy had a higher proportion of labile SOC fraction, but a lower proportion of inert fraction. Moreover, MBC content in paddy was not related to the accumulation of the labile fraction of POC, but positively related to the accumulation of the inert fraction of MAOC. In summary, agricultural land uses have great influence on SOC and its fractions in hilly red soil regions. Though paddy is beneficial for SOC sequestration, the proportions of labile fractions in its SOC are relatively higher, and thus it is vulnerable to loss due to improper agricultural management.

4.
Sci Total Environ ; 628-629: 53-63, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29428860

RESUMO

Phosphorus (P) acquisition by plants from soil organic P mainly relies on microorganisms. Examining the community of functional microbes that encode phosphatases (e.g. PhoD) under different fertilization managements may provide valuable information for promoting soil organic P availability. Here, we investigated how the abundance and community diversity of phoD-harboring bacteria responded to long-term fertilization in Karst soils. Six fertilization treatments were designed as follows: non-fertilized control (CK), inorganic fertilization only (NPK), and inorganic fertilization combined with low- and high amounts of straw (LSNPK and HSNPK), or cattle manure (LMNPK and HMNPK). We found that soil available phosphorus (AP) content and the activity of alkaline phosphatase (ALP) were significantly higher in all combined inorganic/organic fertilization treatments, while the abundance of the phoD gene was only higher in the HMPNK treatment, compared to NPK. The combination of inorganic/organic fertilizations had no effect on the diversity of phoD genes compared to NPK alone, but the phoD gene richness was greater in these treatments as compared to the control. Only organic fertilization combinations with high amounts of organic matter (both HSNPK and HMNPK) significantly affected the phoD community structure. A structure equation model demonstrated that soil organic carbon (SOC), rather than P, greatly affected the phoD community structure, suggesting that organic P mineralization in soils is decoupled from C mineralization. Our results suggested that optimized combinations of inorganic/organic fertilizations could promote P availability via regulating soil phoD-harboring bacteria community diversity and ALP activity.


Assuntos
Bactérias , Fertilizantes , Microbiologia do Solo , Solo/química , Animais , Carbono , Esterco , Fósforo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...