Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chin Herb Med ; 13(4): 502-517, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34659385

RESUMO

OBJECTIVE: To analyze the medication rules of traditional Chinese medicine (TCM) preventive oral prescriptions for COVID-19. METHODS: The preventive oral prescriptions for COVID-19 published by national and provincial health and wellness committees, administrations of TCM, medical institutions at all levels, medical masters and Chinese medicine experts were collected to establish a database, manual screening was carried out according to the inclusion and exclusion criteria, and frequency statistics, association rule analysis. The mutual information method, entropy hierarchical clustering and other methods were improved through Excel and the TCM inheritance auxiliary platform V2.5 to mine the rules and characteristics of medication. RESULTS: The selected 157 prescriptions contained a total of 130 TCMs. The top five TCMs with the highest use frequency were Glycyrrhizae Radix et Rhizoma (86), Astragali Radix (80), Lonicerea Japonicae Flos (70), Atractylodis Macrocephalae Rhizoma (62), Saposhnikoviae Radix (60). In accordance with TCM efficacy classification, most of them were medicines for qi-tonifying (279), followed by medicines for clearing heat and drying dampness (163), dispelling pathogenic wind-cold (126), resolving dampness (111), as well as dispelling pathogenic wind-heat (99). The characteristics of four-natures of the selected medicines are as follows: most of them were cold (59), followed by warm (38) and mild (21). In terms of five-taste, most of them were sweet (26) and acrid-and-bitter (24), followed by sweet-and-bitter (20), bitter (20) and acrid (15). For the meridian attribution, the five-zang organs and six-fu organs were all involved, most of them attributed to lung meridian (80), followed by stomach meridian (57) and spleen meridian (40). Based on association rule analysis, 12 commonly used medicine combinations with two or three TCMs were found. The commonly used medicinal pairs included Astragali Radix and Saposhnikoviae Radix (51), Astragali Radix and Atractylodis Macrocephalae Rhizoma (46), Atractylodis Macrocephalae Rhizoma and Saposhnikoviae Radix (43), Astragali Radix and Atractylodis Macrocephalae Rhizoma and Saposhnikoviae Radix (38), Forsythiae Fructus and Astragali Radix (37), and so on. In addition, 14 core combinations of medicines were obtained by complex system entropy cluster analysis, on this basis, six new prescriptions were screened out based on unsupervised entropy hierarchical clustering analysis. According to The Catalogue of Edible Traditional Chinese Medicinal Materials, Traditional Chinese Medicinal Materials for Health Food, and New Resources of Food published by National Health Commission of the People's Republic of China, there are 35 species belonging to the group of edible traditional Chinese medicinal materials, 20 species belonging to the group of new resources of food, 31 species belonging to the group of traditional Chinese medicinal materials for health food, 19.11% of the preventive oral prescriptions for COVID-19 were composed of the medicines belonging to the above three groups. Besides, there are 11 toxic species, and 24.84% of the preventive oral prescriptions for COVID-19 contained toxic TCMs. CONCLUSION: We found that invigorating qi and resolving dampness were the main treatment used to prevent for COVID-19, combined with the methods for strengthening vital energy and eliminating pathogenic factors. Most of the preventive oral prescriptions for COVID-19 were treated in lung, spleen and stomach meridians. In the process of selecting prescriptions and using TCMs to prevent for COVID-19, the safety of preventive medicines was also emphasized. And the theory of "Preventive Treatment of Disease" was embodied in these preventive oral prescriptions for COVID-19. For the prescriptions containing toxic TCMs, special attention should be paid to their safety in clinical application.

2.
Cardiovasc Toxicol ; 21(11): 901-913, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34339023

RESUMO

Camphor is a terpene ketone with aromatic and volatile properties in nature derived from the bark of Cinnamomum camphora or synthesized from turpentine. Camphor exhibits various biological properties such as anti-microbial, anti-viral, anti-coccidial, and anti-cancer. It is also used as a form of topical medication for skin irritation, joint pain, and as a relief for itching from insect bites. However, even though the high dose of camphor has been documented to be toxic/lethal in humans in different studies, camphor's developmental toxicity has not yet been explored, and its extensive mechanism of action is still unclear. In the present study, we aimed to assess the toxic effects of camphor in zebrafish embryos in the initial developmental stages. The obtained results demonstrated that a sub-lethal dose of camphor caused a decrease in hatching rate, body length, and substantial elevation in malformation rate on zebrafish embryos. On further observation, in the following time frame, curved body and pericardial edema of zebrafish were also observed. Furthermore, exposure to a sub-lethal dose of camphor was also able to trigger cardiotoxicity in zebrafish larvae. Later, on subsequent biochemical analysis, it was found that the antioxidant capacity inhibition and oxidative stress elevation that occurred after camphor exposure might be associated with the inhibition of total superoxide dismutase (SOD) activity and an increase in reactive oxygen species (ROS) and malondialdehyde (MDA) concentration. In addition, compared to the control group, several apoptotic cells in treated zebrafish were also found to be elevated. Finally, after further investigation on marker gene expressions, we conclude that the developmental toxicity of camphor exposure might be associated with apoptosis elevation and oxidative stress. Taken together, the current study provides a better understanding of the developmental toxicity of camphor on zebrafish, a promising alternative animal model to assess the developmental toxicity of chemical compounds.


Assuntos
Apoptose/efeitos dos fármacos , Cânfora/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Coração/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Cardiotoxicidade , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Coração/fisiopatologia , Malondialdeído/metabolismo , Morfogênese , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Superóxido Dismutase/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética
3.
J Appl Toxicol ; 41(8): 1222-1231, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33445225

RESUMO

Momordica cochinchinensis (Lour.) Spreng is an indigenous South Asian edible fruit, and seeds of Momordica cochinchinensis have been used therapeutically in traditional Chinese medicine. Previous studies have shown that M. cochinchinensis seed (Momordicae Semen) has various pharmaceutical properties such as antioxidant and anti-ulcer effects as well as contains secondary metabolites with potential anticancer activities such as triterpenoids and saponins. Recent studies reported that water extract and ethanol extract of M. cochinchinensi seed were tested on mammals using an acute toxic classic method as OECD guidelines 420. No matter injected intravenously or intramuscularly, animals died within several days. In this study, zebrafish embryos were exposed to various doses of Cochinchina momordica seed extract (CMSE) from 2 dpf (days post fertilization, dpf) to 3 dpf. CMSE-induced cardiotoxicity such as pericardial edema, cardiac apoptosis, increased ROS production, cardiac neutrophil infiltration, decreased blood flow velocity, and reduced expression of three marker genes of cardiac functions were found in zebrafish roughly in a dose-dependent manner. These results suggest that CMSE may induce cardiotoxicity through pathways involved in inflammation, oxidative stress, and apoptosis.


Assuntos
Cardiotoxicidade/etiologia , Momordica/química , Extratos Vegetais/toxicidade , Sementes/química , Animais , Apoptose/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Coração/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Momordica/toxicidade , Sementes/toxicidade , Peixe-Zebra
4.
Artigo em Inglês | MEDLINE | ID: mdl-33316388

RESUMO

Genipin, an iridoid substance, is mainly derived from Gardenia jasminoides Ellis of the traditional Chinese medicine and is widely used in raw materials for the food additive gardenia blue and biological materials. The developmental toxicity of genipin has not been investigated, and its underlying mechanism is unclear. Therefore, in this study we attempt to investigate the potential developmental toxicity of genipin in zebrafish embryos/larvae. The results showed zebrafish embryos treated with 50 µg/ml dose of genipin display inhibited hatching rates and body length. The pericardial edema was observed. It was also found that genipin could induce cardio-toxicity, hepatotoxicity and nephrotoxicity in zebrafish larvae. After genipin treatment, the suppression of antioxidant capacity and increase of oxidative stress were showed for the triggered generation of ROS and MDA, and decreased activity of SOD. Compared with the 0.5% DMSO group, a number of apoptotic cells in zebrafish were increased after genipin exposure. By measuring marker gene expression with the using of qRT-PCR, we proposed that developmental toxicity after genipin treatment might be associated with oxidative stress and apoptosis increase. Our research offers a better understanding for developmental toxicity of genipin.


Assuntos
Apoptose/efeitos dos fármacos , Colagogos e Coleréticos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Iridoides/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Peixe-Zebra/embriologia , Animais , Biomarcadores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Larva/efeitos dos fármacos , Malondialdeído/metabolismo , Superóxido Dismutase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...