Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 14(3)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35378518

RESUMO

Stem cell spheroids are advanced building blocks to produce chondroid. However, the multi-step operations including spheroids preparation, collection and transfer, the following 3D printing and shaping limit their application in 3D printing. The present study fabricates an 'ALL-IN-ONE' bioink based on granular hydrogel to not only produce adipose derived stem cell (ASC) spheroids, but also realize the further combination of chondrocytes and the subsequent 3D printing. Microgels (6-10µm) grafted with ß-cyclodextrin (ß-CD) (MGß-CD) were assembled and crosslinked byin-situpolymerized poly (N-isopropylacrylamide) (PNIPAm) to form bulk granular hydrogel. The host-guest action between ß-CD of microgels and PNIPAm endows the hydrogel with stable, shear-thinning and self-healing properties. After creating caves, ASCs aggregate spontaneously to form numerous spheroids with diameter of 100-200µm inside the hydrogel. The thermosensitive porous granular hydrogel exhibits volume change under different temperature, realizing further adsorbing chondrocytes. Then, the granular hydrogel carrying ASC spheroids and chondrocytes is extruded by 3D printer at room temperature to form a tube, which can shrink at cell culture temperature to enhance the resolution. The subsequent ASC spheroids/chondrocytes co-culture forms cartilage-like tissue at 21 din vitro, which further matures subcutaneouslyin vivo, indicating the application potential of the fully synthetic granular hydrogel ink toward organoid culture.


Assuntos
Condrócitos , Microgéis , Tecido Adiposo , Hidrogéis , Esferoides Celulares , Células-Tronco , Engenharia Tecidual
2.
ACS Appl Mater Interfaces ; 12(36): 40163-40175, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32799444

RESUMO

Stem-cell-derived organoid can resemble in vivo tissue counterpart and mimic at least one function of tissue or organ, possessing great potential for biomedical application. The present study develops a hydrogel with cell-responsive switch to guide spontaneous and sequential proliferation and aggregation of adipose-derived stem cells (ASCs) without inputting artificial stimulus for in vitro constructing cartilaginous microtissues with enhanced retention of cell-matrix and cell-cell interactions. Polylactic acid (PLA) rods are surface-aminolyzed by cystamine, followed by being involved in the amidation of poly(( l-glutamic acid) and adipic acid dihydrazide (ADH) to form a hydrogel. Along with tubular pore formation in hydrogel after dissolution of PLA rods, aminolyzed PLA molecules with disulfide bonds on rod surfaces are covalently transferred to the tubular pore surfaces of poly(l-glutamic acid)/ADH hydrogel. Because PLA attaches cells, while poly(l-glutamic acid)/ADH hydrogel repels cells, ASCs are found to adhere and proliferate on the tubular pore surfaces of hydrogel first and then cleave disulfide bonds by secreting molecules containing thiol, thus inducing desorption of PLA molecules and leading to their spontaneous detachment and aggregation. Associated with chondrogenic induction by TGF-ß1 and IGF-1 in vitro for 28 days, the hydrogel as an all-in-one incubator produces well-engineered columnar cartilage microtissues from ASCs, with the glycosaminoglycans (GAGs) and collagen type II (COL II) deposition achieving 64 and 69% of those in chondrocytes pellet, respectively. The cartilage microtissues further matured in vivo for 8 weeks to exhibit extremely similar histological features and biomechanical performance to native hyaline cartilage. The GAGs and COL II content, as well as compressive modulus of the matured tissue show no significant difference with native cartilage. The designer hydrogel may hold a promise for long-term culture of other types of stem cells and organoids.


Assuntos
Cartilagem Articular , Hidrogéis/química , Células-Tronco/citologia , Engenharia Tecidual , Alicerces Teciduais/química , Adipatos/química , Animais , Cistamina/química , Hidrogéis/síntese química , Masculino , Tamanho da Partícula , Poliésteres/química , Ácido Poliglutâmico/química , Porosidade , Coelhos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...