Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurol Sci ; 444: 120521, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36528976

RESUMO

BACKGROUND AND OBJECTIVE: Neuromuscular fatigue contributes to decrements in quality of life in Multiple Sclerosis (MS), yet available treatments demonstrate limited efficacy. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique which presents promise in managing fatigue, possibly related to its capacity to modulate corticospinal excitability. There is evidence for capitalising on metaplasticity using tDCS for improving outcomes. However, this remains to be explored with fatigue in people with MS (pwMS). We investigated cathodal tDCS (ctDCS) priming on anodal tDCS (atDCS)-induced corticospinal excitability and fatigue modulation in pwMS. METHODS: 15 pwMS and 15 healthy controls completed fatiguing exercise whilst receiving either ctDCS or sham (stDCS) primed atDCS to the motor cortex. We assessed change in contraction force and motor evoked potential (MEP) amplitude across time to represent changes in fatigue and corticospinal excitability. RESULTS AND CONCLUSION: ctDCS primed atDCS induced MEP elevation in healthy participants but not in pwMS, possibly indicating impaired metaplasticity in pwMS. No tDCS-mediated change in the magnitude of fatigue was observed, implying that development of fatigue may not rely on changes in corticospinal excitability. SIGNIFICANCE: These findings expand understanding of tDCS effects in pwMS, highlighting differences that may be relevant in the disease pathophysiology.


Assuntos
Esclerose Múltipla , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Esclerose Múltipla/complicações , Esclerose Múltipla/terapia , Qualidade de Vida , Potencial Evocado Motor , Encéfalo , Estimulação Magnética Transcraniana
2.
Bone ; 145: 115874, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33548573

RESUMO

Growth plate cartilage injuries often result in bony repair at the injury site and premature mineralisation at the uninjured region causing bone growth defects, for which underlying mechanisms are unclear. With the prior microarray study showing upregulated bone morphogenetic protein (BMP) signalling during the injury site bony repair and with the known roles of BMP signalling in bone healing and growth plate endochondral ossification, this study used a rat tibial growth plate drill-hole injury model with or without systemic infusion of BMP antagonist noggin to investigate roles of BMP signalling in injury repair responses within the injury site and in the adjacent "uninjured" cartilage. At days 8, 14 and 35 post-injury, increased expression of BMP members and receptors and enhanced BMP signalling (increased levels of phosphorylated (p)-Smad1/5/8) were found during injury site bony repair. After noggin treatment, injury site bony repair at days 8 and 14 was reduced as shown by micro-CT and histological analyses and lower mRNA expression of osteogenesis-related genes Runx2 and osteocalcin (by RT-PCR). At the adjacent uninjured cartilage, the injury caused increases in the hypertrophic zone/proliferative zone height ratio and in mRNA expression of hypertrophy marker collagen-10, but a decrease in chondrogenesis marker Sox9 at days 14 and/or 35, which were accompanied by increased BMP signalling (increased levels of pSmad1/5/8 protein and BMP7, BMPR1a and target gene Dlx5 mRNA). Noggin treatment reduced the hypertrophic zone/proliferative zone height ratio and collagen-10 mRNA expression, but increased collagen-2 mRNA levels at the adjacent growth plate. This study has identified critical roles of BMP signalling in the injury site bony repair and in the hypertrophic degeneration of the adjacent growth plate in a growth plate drill-hole repair model. Moreover, suppressing BMP signalling can potentially attenuate the undesirable bony repair at injury site and suppress the premature hypertrophy but potentially rescue chondrogenesis at the adjacent growth plate.


Assuntos
Lâmina de Crescimento , Fraturas Salter-Harris , Animais , Cartilagem , Osteogênese , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...