Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 372
Filtrar
1.
Angew Chem Int Ed Engl ; : e202411298, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011619

RESUMO

The engineering of tunable photoluminescence (PL) in single materials with a full-spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near-full-spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a single-component two-dimensional (2D) hybrid lead halide perovskite, (ETA)2PbBr4 (ETA+ = (HO)(CH2)2NH3+), is reported, achieved through high-pressure treatment. A pressure-induced phase transition occurs upon compression, transforming the crystal structure from an orthorhombic phase under ambient conditions to a monoclinic structure at high pressure. This phase transition driven by the adaptive and dynamic configuration changes of organic amine cations enables an effective and continuous narrowing of the bandgap in this halide crystal. The hydrogen bonding interactions between inorganic layers and organic amine cations (N-H…Br and O-H…Br hydrogen bonds) efficiently modulate the organic amine cations penetration and the octahedral distortion. Consequently, this phenomenon induces a phase transition and results in red-shifted PL emissions, leading to the near-full-spectrum emission. This work opens a possibility for achieving wide PL emissions with coverage across the visible light spectrum by employing high pressure in single halide perovskites.

2.
Angew Chem Int Ed Engl ; : e202411342, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078740

RESUMO

Herein, we firstly develop porous organic cage (POC) as an efficient platform for highly effective radioactive iodine capture under industrial operating conditions (typically ≥ 150 °C, ≤ 150 ppmv of I2). Due to the highly dispersed and readily accessible binding sites as well as sufficient accommodating space, the constructed NKPOC-DT-(I-)Me (NKPOC = Nankai porous organic cage) demonstrates a record-high I2 uptake capacity of 48.35 wt% and extraordinary adsorption capacity of unit ionic site (~1.62) at 150 °C and 150 ppmv of I2. The I2 capacity is 3.5, 1.6, and 1.3 times higher than industrial silver-based adsorbents Ag@MOR and benchmark materials of TGDM and 4F-iCOF-TpBpy-I- under the same conditions. Furthermore, NKPOC-DT-(I-)Me exhibits remarkable adsorption kinetics (k1 = 0.013 min-1), which is 1.2 and 1.6 times higher than TGDM and 4F-iCOF-TpBpy-I- under the identical conditions. NKPOC-DT-(I-)Me thus sets a new benchmark for industrial radioactive I2 adsorbents. This work not only provides a new insight for effectively enhancing the adsorption capacity of unit functional sites, but also advances POC as an efficient platform for radioiodine capture in industry.

3.
Diabetol Metab Syndr ; 16(1): 136, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907296

RESUMO

BACKGROUND: The interplay between diabetes mellitus (DM), glycemic traits, and vascular and valvular calcifications is intricate and multifactorial. Exploring potential mediators may illuminate underlying pathways and identify novel therapeutic targets. METHODS: We utilized univariable and multivariable Mendelian randomization (MR) analyses to investigate associations and mediation effects. Additionally, the multivariable MR analyses incorporated cardiometabolic risk factors, allowing us to account for potential confounders. RESULTS: Type 2 diabetes mellitus (T2DM) and glycated hemoglobin (HbA1c) were positively associated with both coronary artery calcification (CAC) and calcific aortic valvular stenosis (CAVS). However, fasting glucose (FG) was only linked to CAVS and showed no association with CAC. Additionally, CAVS demonstrated a causal effect on FG. Calcium levels partially mediated the impact of T2DM on both types of calcifications. Specifically, serum calcium was positively associated with both CAC and CAVS. The mediation effects of calcium levels on the impact of T2DM on CAC and CAVS were 6.063% and 3.939%, respectively. The associations between T2DM and HbA1c with calcifications were influenced by body mass index (BMI) and smoking status. However, these associations were generally reduced after adjusting for hypertension. CONCLUSION: Our findings suggest a genetically supported causal relationship between DM, glycemic traits, and vascular and valvular calcifications, with serum calcium playing a critical mediating role.

4.
Science ; 384(6695): 579-584, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696580

RESUMO

Fractional quantum Hall (FQH) states are known for their robust topological order and possess properties that are appealing for applications in fault-tolerant quantum computing. An engineered quantum platform would provide opportunities to operate FQH states without an external magnetic field and enhance local and coherent manipulation of these exotic states. We demonstrate a lattice version of photon FQH states using a programmable on-chip platform based on photon blockade and engineering gauge fields on a two-dimensional circuit quantum electrodynamics system. We observe the effective photon Lorentz force and butterfly spectrum in the artificial gauge field, a prerequisite for FQH states. After adiabatic assembly of Laughlin FQH wave function of 1/2 filling factor from localized photons, we observe strong density correlation and chiral topological flow among the FQH photons. We then verify the unique features of FQH states in response to external fields, including the incompressibility of generating quasiparticles and the smoking-gun signature of fractional quantum Hall conductivity. Our work illustrates a route to the creation and manipulation of novel strongly correlated topological quantum matter composed of photons and opens up possibilities for fault-tolerant quantum information devices.

5.
J Am Chem Soc ; 146(20): 14357-14367, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38726589

RESUMO

Introducing dynamic behavior into periodic frameworks has borne fruit in the form of flexible porous crystals. The detailed molecular design of frameworks in order to control their collective dynamics is of particular interest, for example, to achieve stimulus-induced behavior. Herein, by varying the degree of rigidity of ditopic pillar linkers, two isostructural flexible metal-organic frameworks (MOFs) with common rigid supermolecular building bilayers were constructed. The subtle substitution of single (in bibenzyl-4,4'-dicarboxylic acid; H2BBDC) with double (in 4,4'-stilbenedicarboxylic acid; H2SDC) C-C bonds in pillared linkers led to markedly different flexible behavior of these two MOFs. Upon the removal of guest molecules, both frameworks clearly show reversible single-crystal-to-single-crystal transformations involving the cis-trans conformation change and a resulting swing of the corresponding pillar linkers, which gives rise to Flex-Cd-MOF-1a and Flex-Cd-MOF-2a, respectively. Strikingly, a more favorable gas-induced dynamic behavior in Flex-Cd-MOF-2a was verified in detail by stepwise C3H6/C3H8 sorption isotherms and the corresponding in situ powder X-ray diffraction experiments. These insights are strongly supported by molecular modeling studies on the sorption mechanism that explores the sorption landscape. Furthermore, a consistency between the macroscopic elasticity and microscopic flexibility of Flex-Cd-MOF-2 was observed. This work fuels a growing interest in developing MOFs with desired chemomechanical functions and presents detailed insights into the origins of flexible MOFs.

6.
Angew Chem Int Ed Engl ; 63(30): e202404386, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38720177

RESUMO

Based on the electron-withdrawing effect of the Pt(bpy)Cl2 molecule, a simple post-modification amide reaction was firstly used to graft it onto the surface of NH2-MIL-125, which performed as a highly efficient electron acceptor that induced the conversion of the photoinduced charge migration pathway from internal BDC→TiOx migration to external BDC→PtNx migration, significantly improving the efficiency of photoinduced electron transfer and separation. Furthermore, precisely regulating over the first coordination sphere of Pt single atoms was achieved using further post-modification with additional bipyridine to investigate the effect of Pt-Nx coordination numbers on reaction activity. The as-synthesized NML-PtN2 exhibited superior photocatalytic hydrogen evolution activity of 7.608 mmol g-1 h-1, a remarkable improvement of 225 and 2.26 times compared to pristine NH2-MIL-125 and NML-PtN4, respectively. In addition, the superior apparent quantum yield of 4.01 % (390 nm) and turnover frequency of 190.3 h-1 (0.78 wt % Pt SA; 129 times compared to Pt nanoparticles/NML) revealed the high solar utilization efficiency and hydrogen evolution activity of the material. And macroscopic color changes caused by the transition of carrier migration paths was first observed. It holds profound significance for the design of MOF-Molecule catalysts with efficient charge carrier separation and precise regulation of single-atom coordination sphere.

7.
Adv Mater ; 36(31): e2404692, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38752852

RESUMO

Introducing asymmetric elements and breaking the geometric symmetry of traditional metal-N4 site for boosting oxygen reduction reaction (ORR) are meaningful and challenging. Herein, the planar chlorination engineering of Fe-N4 site is first proposed for remarkably improving the ORR activity. The Fe-N4/CNCl catalyst with broken symmetry exhibits a half-wave potential (E1/2) of 0.917 V versus RHE, 49 and 72 mV higher than those of traditional Fe-N4/CN and commercial 20 wt% Pt/C catalysts. The Fe-N4/CNCl catalyst also has excellent stability for 25 000 cycles and good methanol tolerance ability. For Zn-air battery test, the Fe-N4/CNCl catalyst has the maximum power density of 228 mW cm-2 and outstanding stability during 150 h charge-discharge test, as the promising substitute of Pt-based catalysts in energy storage and conversion devices. The density functional theory calculation demonstrates that the adjacent C─Cl bond effectively breaks the symmetry of Fe-N4 site, downward shifts the d-band center of Fe, facilitates the reduction and release of OH*, and remarkably lowers the energy barrier of rate-determining step. This work reveals the enormous potential of planar chlorination engineering for boosting the ORR activity of traditional metal-N4 site by thoroughly breaking their geometric symmetry.

8.
Angew Chem Int Ed Engl ; : e202406956, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713527

RESUMO

Supramolecular assembly frameworks (SAFs) represent a new category of porous materials, utilizing non-covalent interactions, setting them apart from metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). This category includes but is not restricted to hydrogen-bonded organic frameworks and supramolecular organic frameworks. SAFs stand out for their outstanding porosity, crystallinity, and stability, alongside unique dissolution-recrystallization dynamics that enable significant structural and functional modifications. Crucially, their non-covalent assembly strategies allow for a balanced manipulation of porosity, symmetry, crystallinity, and dimensions, facilitating the creation of advanced crystalline porous materials unattainable through conventional covalent or coordination bond synthesis. Despite their considerable promise in overcoming several limitations inherent to MOFs and COFs, particularly in terms of solution-processability, SAFs have received relatively little attention in recent literature. This Minireview aims to shed light on standout SAFs, exploring their design principles, synthesis strategies, and characterization methods. It emphasizes their distinctive features and the broad spectrum of potential applications across various domains, aiming to catalyze further development and practical application within the scientific community.

9.
Inorg Chem ; 63(18): 8329-8335, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38648287

RESUMO

Most of the porous materials used for acetylene/carbon dioxide separation have the problems of poor stability and high energy requirements for regeneration, which significantly hinder their practical application in industries. Here, we report a novel calcium-based metal-organic framework (NKM-123) with excellent chemical stability against water, acids, and bases. Additionally, it has exceptional thermal stability, retaining its structural integrity at temperatures up to 300 °C. This material exhibits promising potential for separating C2H2 and CO2 gases. Furthermore, it demonstrates an adsorption heat of 29.3 kJ mol-1 for C2H2, which is lower than that observed in the majority of MOFs used for C2H2/CO2 separations. The preferential adsorption of C2H2 over that of CO2 is confirmed by dispersion-corrected density functional theory (DFT-D) calculations. In addition, the potential of industrial feasibility of NKM-123 for C2H2/CO2 separation is confirmed by transient breakthrough tests. The robust cycle performance and structural stability of NKM-123 during multiple breakthrough tests show great potential in the industrial separation of light hydrocarbons.

10.
Chem Soc Rev ; 53(11): 5626-5676, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38655667

RESUMO

Metalation of metal-organic frameworks (MOFs) has been developed as a prominent strategy for materials functionalization for pore chemistry modulation and property optimization. By introducing exotic metal ions/complexes/nanoparticles onto/into the parent framework, many metallized MOFs have exhibited significantly improved performance in a wide range of applications. In this review, we focus on the research progress in the metalation of metal-organic frameworks during the last five years, spanning the design principles, synthetic strategies, and potential applications. Based on the crystal engineering principles, a minor change in the MOF composition through metalation would lead to leveraged variation of properties. This review starts from the general strategies established for the incorporation of metal species within MOFs, followed by the design principles to graft the desired functionality while maintaining the porosity of frameworks. Facile metalation has contributed a great number of bespoke materials with excellent performance, and we summarize their applications in gas adsorption and separation, heterogeneous catalysis, detection and sensing, and energy storage and conversion. The underlying mechanisms are also investigated by state-of-the-art techniques and analyzed for gaining insight into the structure-property relationships, which would in turn facilitate the further development of design principles. Finally, the current challenges and opportunities in MOF metalation have been discussed, and the promising future directions for customizing the next-generation advanced materials have been outlined as well.

11.
Small Methods ; : e2301662, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634221

RESUMO

Broadband emission in hybrid lead halide perovskites (LHPs) has gained significant attention due to its potential applications in optoelectronic devices. The origin of this broadband emission is primarily attributed to the interactions between electrons and phonons. Most investigations have focused on the impact of structural characteristics of LHPs on broadband emission, while neglecting the role of electronic mobility. In this work, the study investigates the electronic origins of broadband emission in a family of 2D LHPs. Through spectroscopic experiments and density functional theory calculations, the study unveils that the electronic states of the organic ligands with conjugate effect in LHPs can extend to the band edges. These band-edge carriers are no longer localized only within the inorganic layers, leading to electronic coupling with molecular states in the barrier and giving rise to additional interactions with phonon modes, thereby resulting in broadband emission. The high-pressure photoluminescence measurements and theoretical calculations reveal that hydrostatic pressure can induce the reconfiguration of band-edge states of charge carriers, leading to different types of band alignment and achieving macroscopic control of carrier dynamics. The findings can provide valuable guidance for targeted synthesis of LHPs with broadband emission and corresponding design of state-of-the-art optoelectronic devices.

12.
Nano Lett ; 24(15): 4354-4361, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38563599

RESUMO

The recent focus of cancer therapeutics research revolves around modulating the immunosuppressive tumor microenvironment (TME) to enhance efficacy. The tumor stroma, primarily composed of cancer-associated fibroblasts (CAFs), poses significant obstacles to therapeutic penetration, influencing resistance and tumor progression. Reprogramming CAFs into an inactivated state has emerged as a promising strategy, necessitating innovative approaches. This study pioneers the design of a nanoformulation using pioglitazone, a Food and Drug Administration-approved anti-diabetic drug, to reprogram CAFs in the breast cancer TME. Glutathione (GSH)-responsive dendritic mesoporous organosilica nanoparticles loaded with pioglitazone (DMON-P) are designed for the delivery of cargo to the GSH-rich cytosol of CAFs. DMON-P facilitates pioglitazone-mediated CAF reprogramming, enhancing the penetration of doxorubicin (Dox), a therapeutic drug. Treatment with DMON-P results in the downregulation of CAF biomarkers and inhibits tumor growth through the effective delivery of Dox. This innovative approach holds promise as an alternative strategy for enhancing therapeutic outcomes in CAF-abundant tumors, particularly in breast cancer.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Nanopartículas , Humanos , Feminino , Pioglitazona/farmacologia , Pioglitazona/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Microambiente Tumoral
13.
Angew Chem Int Ed Engl ; 63(22): e202403646, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38494740

RESUMO

Organic piezochromic materials that manifest pressure-stimuli-responses are important in various fields such as data storage and anticounterfeiting. The manipulation of piezofluorochromic behaviors for these materials is promising but remains a great challenge. Herein, a non-luminous components regulated strategy is developed and organic molecular cages (OMCs), a burgeoning class of crystalline organic materials with structural dynamics, are first explored for the design of piezofluorochromic materials with tunable luminescence. A series of OMCs based on aggregation-induced emission (AIE) chromophores, termed Cage 1-3, are synthesized and their piezofluorochromic behaviors are investigated by diamond anvil cell technique. Due to the sufficient voids between its flexible chromophores offered by the OMC structure, Cage 1 exhibits thermofluorochromic and piezofluorochromic properties. Moreover, the piezofluorochromic performance of this OMC could be further promoted by replacing its non-luminous components with improved flexibilities, and a remarkable luminescence peak shift by 150 nm together with a response sensitivity of 13.8 nm GPa-1 was achieved upon hydrostatic compression. The cage structure plays a vital role in facilitating efficient and reversible piezofluorochromic behaviors. This study has shed light on the rational design and exploitation of OMCs as an exceptional platform to accomplish customizable piezofluorochromic behaviors and enlarge their potential applications in pressure-based luminescence.

14.
Chem Sci ; 15(12): 4529-4537, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516073

RESUMO

The rational design and construction of hydrogen-bonded organic frameworks (HOFs) are crucial for enabling their practical applications, but controlling their structure and preparation as intended remains challenging. Inspired by reticular chemistry, two novel blue-emitting NKM-HOF-1 and NKM-HOF-2 were successfully constructed based on two judiciously designed peripherally extended pentiptycene carboxylic acids, namely H8PEP-OBu and H8PEP-OMe, respectively. The large pores within these two HOFs can adsorb fluorescent molecules such as diketopyrrolopyrrole (DPP) and 9-anthraldehyde (AnC) to form HOFs ⊃ DPP/AnC composites, subsequently used in the fabrication of white-light-emitting devices (WLEDs). Specifically, two WLEDs were assembled by coating NKM-HOF-1 ⊃ DPP-0.13/AnC-3.5 and NKM-HOF-2 ⊃ DPP-0.12/AnC-3 on a 330 nm ultraviolet LED bulb, respectively. The corresponding CIE coordinates were (0.29, 0.33) and (0.32, 0.34), along with corresponding color temperatures of 7815 K and 6073 K. This work effectively demonstrates the feasibility of employing reticular chemistry strategies to predict and design HOFs with specific topologies for targeted applications.

15.
Chem Sci ; 15(10): 3530-3538, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38455020

RESUMO

Stimuli-responsive optical materials have provided a powerful impetus for the development of intelligent optoelectronic devices. The family of organic-inorganic hybrid metal halides, distinguished by their structural diversity, presents a prospective platform for the advancement of stimuli-responsive optical materials. Here, we have employed a crown ether to anchor the A-site cation of a chiral antimony halide, enabling convenient control and modulation of its photophysical properties. The chirality-dependent asymmetric lattice distortion of inorganic skeletons assisted by a crown ether promotes the formation of self-trapped excitons (STEs), leading to a high photoluminescence quantum yield of over 85%, concomitant with the effective circularly polarized luminescence. The antimony halide enantiomers showcase highly sensitive stimuli-responsive luminescent behaviours towards excitation wavelength and temperature simultaneously, exhibiting a versatile reversible colour switching capability from blue to white and further to orange. In situ temperature-dependent luminescence spectra, time-resolved luminescence spectra and theoretical calculations reveal that the multi-stimuli-responsive luminescent behaviours stem from distinct STEs within zero-dimensional lattices. By virtue of the inherent flexibility and adaptability, these chiral antimony chlorides have promising prospects for future applications in cutting-edge fields such as multifunctional illumination technologies and intelligent sensing devices.

16.
JACS Au ; 4(2): 279-300, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425899

RESUMO

Flexible crystals have gained significant attention owing to their remarkable pliability, plasticity, and adaptability, making them highly popular in various research and application fields. The main challenges in developing flexible crystals lie in the rational design, preparation, and performance optimization of such crystals. Therefore, a comprehensive understanding of the fundamental origins of crystal flexibility is crucial for establishing evaluation criteria and design principles. This Perspective offers a retrospective analysis of the development of flexible crystals over the past two decades. It summarizes the elastic standards and possible plastic bending mechanisms tailored to diverse flexible crystals and analyzes the assessment of their theoretical basis and applicability. Meanwhile, the compatibility between crystal elasticity and plasticity has been discussed, unveiling the immense prospects of elastic/plastic crystals for applications in biomedicine, flexible electronic devices, and flexible optics. Furthermore, this Perspective presents state-of-the-art experimental avenues and analysis methods for investigating molecular interactions in molecular crystals, which is vital for the future exploration of the mechanisms of crystal flexibility.

17.
Angew Chem Int Ed Engl ; 63(19): e202400644, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38470139

RESUMO

Chiral hybrid organic-inorganic metal halides (HOMHs) offer an ideal platform for the advancement of second-order nonlinear optical (NLO) materials owing to their inherent noncentrosymmetric structures. The enhancement of optical nonlinearity of chiral HOMHs could be achieved by matching the free exciton and/or self-trapped exciton energy levels with desired NLO frequencies. However, the current scarcity of resonance modes and low resonance ratio hamper the further improvements of NLO performance. Herein, we propose a new resonant channel of charge transfer (CT) excited states from metal halide polyhedra to organic ligand to boost the second-order optical nonlinearity of chiral HOMHs. The model lead halide (C7H10N)PbBr3 (C7H10N=1-ethylpyridinium) exhibits a drastically enhanced second harmonic generation in resonance to the deep CT exciton energy, with intensity of up to 111.0 times that of KDP and 10.9 times that of urea. The effective NLO coefficient has been determined to be as high as ~40.2 pm V-1, balanced with a large polarization ratio and high laser damage threshold. This work highlights the contribution of organic ligands in the construction of a resonant channel for enhancing second-order NLO coefficients of metal halides, and thus provides guidelines for designing new chiral HOMHs materials for advanced nonlinear photonic applications.

18.
Adv Mater ; 36(19): e2309231, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38345181

RESUMO

Dual-metal center catalysts (DMCs) have shown the ability to enhance the oxygen reduction reaction (ORR) owing to their distinctive structural configurations. However, the precise modulation of electronic structure and the in-depth understanding of synergistic mechanisms between dual metal sites of DMCs at the atomic level remain challenging. Herein, mimicking the ferredoxin, Fe-based DMCs (Fe2N6-S) are strategically designed and fabricated, in which additional Fe and S sites are synchronously installed near the Fe sites and serve as "dual modulators" for coarse- and fine-tuning of the electronic modulation, respectively. The as-prepared Fe2N6-S catalyst exhibits enhanced ORR activity and outstanding Zinc-air (Zn-air) battery performance compared to the conventional single Fe site catalysts. The theoretical and experimental results reveal that introducing the second metal Fe creates a dual adsorption site that alters the O2 adsorption configuration and effectively activates the O─O bond, while the synergistic effect of dual Fe sites results in the downward shift of the d-band center, facilitating the release of OH*. Additionally, local electronic engineering of heteroatom S for Fe sites further facilitates the formation of the rate-determining step OOH*, thus accelerating the reaction kinetics.

19.
Histol Histopathol ; 39(9): 1197-1208, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38318760

RESUMO

BACKGROUND: Inositol polyphosphate 4-phosphatase type II (INPP4B) has been identified as a tumor repressor in several human cancers while its role in endometrial cancer has not been investigated yet. Therefore, the current study was designed to determine whether INPP4B participates in the progression of endometrial cancer by utilizing clinical data and experimental determination. MATERIALS AND METHODS: We first include six chemotherapy-treated patients with recurrent and metastatic endometrioid carcinoma to determine the relationship between INPP4B mutation and relative tumor burden. By using siRNA-mediated gene silencing and vector-mediated gene overexpression, we further determined the effect of manipulating INPP4B expression on the proliferation, invasion, and survival of endometrial cancer cells. Furthermore, the repressing effect of INPP4B together with its role in chemotherapy was further validated by xenograft tumor-bearing mice models. Western blot analysis was used to explore further downstream signaling modulated by INPP4B expression manipulation. RESULTS: Two of the patients were found to have INPP4B mutations and the mutation frequency of INPP4B increased during the progression of chemotherapy resistance. Endometrial cancer cells with silenced INPP4B expression were found to have promoted tumor cell proliferation, invasion, and survival. Endometrial cancer cells overexpressing INPP4B were found to have decreased tumor cell proliferation, invasion, and survival. An in vivo study using six xenograft tumor-bearing mice in each group revealed that INPP4B overexpression could suppress tumor progression and enhance chemosensitivity. Furthermore, INPP4B overexpression was found to modulate the activation of Wnt3a signaling. CONCLUSION: The current study suggested that INPP4B could be a suppressor in endometrial cancer progression and might be a target for endometrial cancer treatment. Also, INPP4B might serve as a predictor of chemosensitivity determination.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias do Endométrio , Invasividade Neoplásica , Monoéster Fosfórico Hidrolases , Humanos , Feminino , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Carcinoma Endometrioide/patologia , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/metabolismo , Pessoa de Meia-Idade , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Mutação
20.
Biomed Chromatogr ; 38(5): e5838, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342982

RESUMO

Strobilanthes sarcorrhiza (CTS) is a medicinal plant with various pharmacological effects such as tonifying kidney and anti-inflammatory. However, the chemical composition and difference of its four parts (leaves, stems, rhizomes, and root tubers) have been rarely reported. In this study, ultrafast flow liquid chromatography coupled with quadrupole-time-of-flight MS was applied to analyze the chemical profile of CTS and identify 55 compounds, including terpenoids, phenylethanol glycosides, fatty acid derivatives, chain glycosides, flavonoid glycosides, and others. Among these compounds, 34 compounds were first identified in CTS. They were mainly terpenoids, phenylethanol glycosides, fatty acid derivatives, and so forth. Multivariate statistical analysis, such as principal component analysis and orthogonal partial least squares-discriminant analysis were also used to evaluate the difference in chemical compounds from the four parts of CTS. The results showed that phenylethanol glycosides were the main compounds of the underground parts, while terpenoids were the main compounds of the aboveground parts. This study revealed the chemical diversity and similarity of CTS and suggested that the rhizomes could be used as an alternative medicinal part to improve the resource utilization of CTS.


Assuntos
Espectrometria de Massas , Análise Multivariada , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Extratos Vegetais/química , Terpenos/análise , Terpenos/química , Glicosídeos/análise , Glicosídeos/química , Cromatografia Líquida de Alta Pressão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...