Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.091
Filtrar
1.
Chin J Integr Med ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990479

RESUMO

OBJECTIVE: To explore the potential mechanism of lysionotin in treating glioma. METHODS: First, target prediction based on Bernoulli Naïve Bayes profiling and pathway enrichment was used to predict the biological activity of lysionotin. The binding between 5-lipoxygenase (5-LO) and lysionotin was detected by surface plasmon resonance (SPR) and molecular docking, and the inhibitory effects of lysionotin on 5-LO and proliferation of glioma were determined using enzyme inhibition assay in vitro and cell viability analysis, respectively. Furthermore, the pharmaceutical effect of lysionotin was explored by cell survival rate analysis and liquid chromatography with tandem mass spectrometry (LC-MS/MS). The protein expression, intracellular calcium ion concentration and cytoskeleton detection were revealed by Western blot, flow cytometry and fluorescence labeling, respectively. RESULTS: Target prediction and pathway enrichment revealed that lysionotin inhibited 5-LO, a key enzyme involved in the arachidonic acid metabolism pathway, to inhibit the proliferation of glioma. Molecular docking results demonstrated that 5-LO can be binding to lysionotin through hydrogen bonds, forming bonds with His600, Gln557, Asn554, and His372. SPR analysis further confirmed the interaction between 5-LO and lysionotin. Furthermore, enzyme inhibition assay in vitro and cell survival rate analysis revealed that 50% inhibition concentration of lysionotin and the median effective concentration of lysionotin were 90 and 16.58 µmol/L, respectively, and the results of LC-MS/MS showed that lysionotin inhibited the production of 5S-hydroperoxy-eicosatetraenoic acid (P<0.05), and moreover, the LC-MS/MS results indicated that lysionotin can enter glioma cells well (P<0.01) and inhibit their proliferation. Western blot analysis demonstrated that lysionotin can inhibit the expression of 5-LO (P<0.05) and downstream leukotriene B4 receptor (P<0.01). In addition, the results showed that lysionotin affected intracellular calcium ion concentration by inhibiting 5-LO to affect the cytoskeleton, as determined by flow cytometry and fluorescence labeling. CONCLUSION: Lysionotin binds to 5-LO could suppress glioma by inhibiting arachiodonic acid metabolism pathway.

2.
J Glob Health ; 14: 04105, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39026461

RESUMO

Background: The HIV and other sexually transmitted infections (STI) excluding HIV among the elderly population urgently require more attention and in-depth study. We aimed to present and predict the worldwide of its burden from 1990 to 2030 using data from the Global Burden of Disease (GBD) study. Methods: Leveraging the 2019 GBD study, we investigated the average annual percentage change (AAPC) of HIV and other STI in incidence, prevalence, disability-adjusted life years (DALYs), and mortality rates for individuals aged 50-69 across different age groups, genders, sociodemographic index (SDI) regions, and nations. The incidence of STI in the population from 2020 to 2030 was explored by Bayesian age-period-cohort (BAPC) prediction model. Results: The HIV incidence rate experienced its fastest growth 1990-1992, peaked in 1996, and gradually declined thereafter, with the 2019 rate being lower than that of 1990. The prevalence rate didn't present a sharp turning point. After 2006, its growth rate accelerated. Both DALYs and mortality rates plateaued high between 2002 and 2005, followed by a decline. The decline was steepest from 2005-2012, yet the rate of decrease slowed noticeably from 2012-2019.When segmented by age, HIV was more prevalent among those aged 55-59 and 50-54, with the 50-54 age group witnessing the fastest decline in incidence rates. However, the fastest growth in prevalence rates was seen among the 60-64 and 65-69 age groups. The other STI incidence rate declined from 1990-1996, increased up to 2006, declined until 2015, and then saw a resurgence with accelerated growth thereafter. The prevalence rate showcased varied trends, with a notable increase in the past five years. The highest growth in incidence rate was among the 65-69 age group. We predict that the incidence rate of STI will increase in the future. Conclusions: Overall, despite the evident decline in incidence, mortality rates, and DALYs, the prevalence of HIV and other STI among the elderly is rising, and both demonstrated significant trend variations across different ages, genders, SDI regions, and nations. Comprehensive sexual health education, clinical care and adjustments in health service strategies based on the evolving trends of HIV and other STI among the elderly are paramount.


Assuntos
Infecções por HIV , Infecções Sexualmente Transmissíveis , Humanos , Masculino , Idoso , Feminino , Pessoa de Meia-Idade , Infecções por HIV/epidemiologia , Infecções por HIV/mortalidade , Infecções Sexualmente Transmissíveis/epidemiologia , Incidência , Prevalência , Saúde Global/estatística & dados numéricos , Carga Global da Doença/tendências , Anos de Vida Ajustados por Deficiência/tendências
3.
Front Psychiatry ; 15: 1390913, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881546

RESUMO

Background: The efficacy and safety of deep transcranial magnetic stimulation (dTMS) as an intervention for schizophrenia remain unclear. This systematic review examined the efficacy and safety of dTMS for schizophrenia. Methods: A systematic search of Chinese (WanFang and Chinese Journal Net) and English databases (PubMed, EMBASE, PsycINFO, and Cochrane Library) were conducted. Results: Three randomized clinical trials (RCTs) comprising 80 patients were included in the analyses. Active dTMS was comparable to the sham treatment in improving total psychopathology, positive symptoms, negative symptoms, and auditory hallucinations measured by the Positive and Negative Syndrome Scale (PANSS), the Scale for the Assessment of Positive Symptoms (SAPS), the Scale for the Assessment of Negative Symptoms (SANS), and the Auditory Hallucinations Rating Scale (AHRS), respectively. Only one RCT reported the effects on neurocognitive function measured by the Cambridge Neuropsychological Test Automated Battery (CANTAB), suggesting that dTMS may only improve one Stockings of Cambridge measure (i.e., subsequent times for five move problems). All three studies reported overall discontinuation rates, which ranged from 16.7% to 44.4%. Adverse events were reported in only one RCT, the most common being tingling/twitching (30.0%, 3/10), head/facial discomfort (30.0%, 3/10), and back pain (20.0%, 2/10). Conclusion: This systematic review suggests that dTMS does not reduce psychotic symptoms in schizophrenia, but it shows potential for improving executive functions. Future RCTs with larger sample sizes focusing on the effects of dTMS on psychotic symptoms and neurocognitive function in schizophrenia are warranted to further explore these findings.

4.
Exploration (Beijing) ; 4(1): 20230016, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38854494

RESUMO

Polyethylene glycol (PEG) is widely used as phase change materials (PCM) due to their versatile working temperature and high latent heat. However, the low molecular weight of PEG prevents from the formation of flexible microfibers, and the common leakage problem associated with solid-liquid PCM further hinders their applications in various fields. To address these challenges, polyethylene oxide (PEO) is incorporated as the supporting matrix for PEG, leading to a successful electrospinning of fibrous mats. Due to the similar chemical nature of both PEG and PEO, the blended composites show great compatibility and produce uniform electrospun fibers. The thermal properties of these fibers are characterized by DSC and TGA, and supercooling for the PEG(1050) component is effectively reduced by 75-85%. The morphology changes before and after leakage test are analyzed by SEM. Tensile and DMA tests show that the presence of PEG(1050) component contributes to plasticization effect, improving mechanical and thermomechanical strength. The ratio of PEO(600K):PEG(1050) at 7:3 affords the optimal performance with good chemical and form-stability, least shrinkage, and uniformity. These fibrous mats have potential applications in areas of food packaging, flexible wearable devices, or textiles to aid in thermal regulation.

5.
Chem Asian J ; : e202400453, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878271

RESUMO

Temperature-responsive hydrogels, or thermogels, have emerged as a leading platform for sustained delivery of both small molecule drugs and macromolecular biologic therapeutics. Although thermogel properties can be modulated by varying the polymer's hydrophilic-hydrophobic balance, molecular weight and degree of branching, varying the supramolecular donor-acceptor interactions on the polymer remains surprisingly overlooked. Herein, to study the influence of enhanced hydrogen bonding on thermogelation, we synthesized a family of amphiphilic polymers containing urea and urethane linkages using quinuclidine as an organocatalyst. Our findings showed that the presence of strongly hydrogen bonding urea linkages significantly enhanced polymer hydration in water, in turn affecting hierarchical polymer self-assembly and macroscopic gel properties such as sol-gel phase transition temperature and gel stiffness. Additionally, analysis of the sustained release profiles of Aflibercept, an FDA-approved protein biologic for anti-angiogenic treatment, showed that urea bonds on the thermogel were able to significantly alter the drug release mechanism and kinetics compared to usage of polyurethane gels of similar composition and molecular weight. Our findings demonstrate the unrealized possibility of modulating gel properties and outcomes of sustained drug delivery through judicious variation of hydrogen bonding motifs on the polymer structure.

6.
Adv Mater ; : e2403551, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837826

RESUMO

Conventional wound closure methods, including sutures and tissue adhesives, present significant challenges for self-care treatment, particularly in the context of bleeding wounds. Existing stimuli-responsive contractile materials designed for autonomous wound closure frequently lack sufficient output work density to generate the force needed to bring the wound edges into proximity or necessitate stimuli that are not compatible with the human body. Here, semi-transparent, flexible, and water-responsive shrinkable films, composed of poly(ethylene oxide) and α-cyclodextrin, are reported. These films exhibit remarkable stability under ambient conditions and demonstrate significant contraction (≈50%) within 6 s upon exposure to water, generating substantial contractile stress (up to 6 MPa) and output work density (≈1028 kJ m-3), which is 100 times larger than that of conventional hydrogel and 25 times larger than that of skeletal muscles. Remarkably, upon hydration, these films are capable of lifting objects 10 000 times their own weight. Leveraging this technology, water-shrink tapes, which, upon contact with water, effectively constrict human skin and autonomously close bleeding wounds in animal models within 10 seconds, are developed further. This work offers a novel approach to skin wound management, showing significant potential for emergency and self-care scenarios.

8.
Nanoscale Horiz ; 9(7): 1190-1199, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38757185

RESUMO

Antibacterial nanoagents have been increasingly developed due to their favorable biocompatibility, cost-effective raw materials, and alternative chemical or optical properties. Nevertheless, there is still a pressing need for antibacterial nanoagents that exhibit outstanding bacteria-binding capabilities and high antibacterial efficiency. In this study, we constructed a multifunctional cascade bioreactor (GCDCO) as a novel antibacterial agent. This involved incorporating carbon dots (CDs), cobalt sulfide quantum dots (CoSx QDs), and glucose oxidase (GOx) to enhance bacterial inhibition under sunlight irradiation. The GCDCO demonstrated highly efficient antibacterial capabilities attributed to its favorable photothermal properties, photodynamic activity, as well as the synergistic effects of hyperthermia, glucose-augmented chemodynamic action, and additional photodynamic activity. Within this cascade bioreactor, CDs played the role of a photosensitizer for photodynamic therapy (PDT), capable of generating ˙O2- even under solar light irradiation. The CoSx QDs not only functioned as a catalytic component to decompose hydrogen peroxide (H2O2) and generate hydroxyl radicals (˙OH), but they also served as heat generators to enhance the Fenton-like catalysis process. Furthermore, GOx was incorporated into this cascade bioreactor to internally supply H2O2 by consuming glucose for a Fenton-like reaction. As a result, GCDCO could generate a substantial amount of reactive oxygen species (ROS), leading to a significant synergistic effect that greatly induced bacterial death. Furthermore, the in vitro antibacterial experiment revealed that GCDCO displayed notably enhanced antibacterial activity against E. coli (99+ %) when combined with glucose under simulated sunlight, surpassing the efficacy of the individual components. This underscores its remarkable efficiency in combating bacterial growth. Taken together, our GCDCO demonstrates significant potential for use in the routine treatment of skin infections among diabetic patients.


Assuntos
Antibacterianos , Glucose Oxidase , Fotoquimioterapia , Pontos Quânticos , Pontos Quânticos/química , Pontos Quânticos/efeitos da radiação , Glucose Oxidase/química , Fotoquimioterapia/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Cobalto/química , Cobalto/farmacologia , Luz , Carbono/química , Carbono/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Reatores Biológicos , Espécies Reativas de Oxigênio/metabolismo
9.
Nat Commun ; 15(1): 4300, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773134

RESUMO

The chromatin modifier GRAIN WEIGHT 6a (GW6a) enhances rice grain size and yield. However, little is known about its gene network determining grain size. Here, we report that MITOGEN-ACTIVED PROTEIN KINASE 6 (OsMAPK6) and E3 ligase CHANG LI GENG 1 (CLG1) interact with and target GW6a for phosphorylation and ubiquitylation, respectively. Unexpectedly, however, in vitro and in vivo assays reveal that both of the two post-translational modifications stabilize GW6a. Furthermore, we uncover two major GW6a phosphorylation sites (serine142 and threonine186) targeted by OsMAPK6 serving an important role in modulating grain size. In addition, our genetic and molecular results suggest that the OsMAPK6-GW6a and CLG1-GW6a axes are crucial and operate in a non-additive manner to control grain size. Overall, our findings identify a previously unknown mechanism by which phosphorylation and ubiquitylation non-additively stabilize GW6a to enhance grain size, and reveal correlations and interactions of these posttranslational modifications during rice grain development.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Ubiquitinação , Oryza/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Fosforilação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Grão Comestível/metabolismo , Grão Comestível/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Plantas Geneticamente Modificadas , Cromatina/metabolismo
10.
ACS Nano ; 18(22): 14339-14347, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38781247

RESUMO

In alignment with the increasing demand for larger storage capacity and longer data retention, the electrical control of magnetic anisotropy has been a research focus in the realm of spintronics. Typically, magnetic anisotropy is determined by grain dimensionality, which is set during the fabrication of magnetic thin films. Despite the intrinsic correlation between magnetic anisotropy and grain dimensionality, there is a lack of experimental evidence for electrically controlling grain dimensionality, thereby impairing the efficiency of magnetic anisotropy modulation. Here, we demonstrate an electric field control of grain dimensionality and prove it as the active mechanism for tuning interfacial magnetism. The reduction in grain dimensionality is associated with a transition from ferromagnetic to superparamagnetic behavior. We achieve a nonvolatile and reversible modulation of the coercivity in both the ferromagnetic and superparamagnetic regimes. Subsequent electrical and elemental analysis confirms the variation in grain dimensionality upon the application of gate voltages, revealing a transition from a multidomain to a single-domain state, accompanied by a reduction in grain dimensionality. Furthermore, we exploit the influence of grain dimensionality on domain wall motion, extending its applicability to multilevel magnetic memory and synaptic devices. Our results provide a strategy for tuning interfacial magnetism through grain size engineering for advancements in high-performance spintronics.

11.
Bioact Mater ; 37: 407-423, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38689660

RESUMO

Traditional optical waveguides or mediums are often silica-based materials, but their applications in biomedicine and healthcare are limited due to the poor biocompatibility and unsuitable mechanical properties. In term of the applications in human body, a biocompatible hydrogel system with excellent optical transparency and mechanical flexibility could be beneficial. In this review, we explore the different designs of hydrogel-based optical waveguides derived from natural and synthetic sources. We highlighted key developments such as light emitting contact lenses, implantable optical fibres, biosensing systems, luminating and fluorescent materials. Finally, we expand further on the challenges and perspectives for hydrogel waveguides to achieve clinical applications.

12.
Asian J Psychiatr ; 96: 104032, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574492

RESUMO

The efficacy and safety of deep transcranial magnetic stimulation (dTMS) in treating treatment-resistant depression (TRD) are unknown. Up to June 21, 2023, we conducted a systematic search for RCTs, and then extracted and synthesized data using random effects models. Five RCTs involving 507 patients with TRD (243 in the active dTMS group and 264 in the control group) were included in the present study. The active dTMS group showed significantly higher study-defined response rate (45.3% versus 24.2%, n = 507, risk ratio [RR] = 1.87, 95% confidence interval [CI]: 1.21-2.91, I2 = 53%; P = 0.005) and study-defined remission rate (38.3% versus 14.4%, n = 507, RR = 2.37, 95%CI: 1.30-4.32, I2 = 58%; P = 0.005) and superiority in improving depressive symptoms (n = 507, standardized mean difference = -0.65, 95%CI: -1.11--0.18, I2 = 82%; P = 0.006) than the control group. In terms of cognitive functions, no significant differences were observed between the two groups. The two groups also showed similar rates of other adverse events and all-cause discontinuations (P > 0.05). dTMS is an effective and safe treatment strategy for the management of patients with TRD.


Assuntos
Transtorno Depressivo Resistente a Tratamento , Estimulação Magnética Transcraniana , Humanos , Transtorno Depressivo Resistente a Tratamento/terapia , Avaliação de Resultados em Cuidados de Saúde , Ensaios Clínicos Controlados Aleatórios como Assunto , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento
13.
Macromol Rapid Commun ; 45(14): e2400064, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38594967

RESUMO

Polyethylene (PE), a highly prevalent non-biodegradable polymer in the field of plastics, presents a waste management issue. To alleviate this issue, bio-based PE (bio-PE), derived from renewable resources like corn and sugarcane, offers an environmentally friendly alternative. This review discusses various production methods of bio-PE, including fermentation, gasification, and catalytic conversion of biomass. Interestingly, the bio-PE production volumes and market are expanding due to the growing environmental concerns and regulatory pressures. Additionally, the production of PE and bio-PE biocomposites using agricultural waste as filler materials, highlights the growing demand for sustainable alternatives to conventional plastics. According to previous studies, addition of ≈50% defibrillated corn and abaca fibers into bio-PE matrix and a compatibilizer, results in the highest Young's modulus of 4.61 and 5.81 GPa, respectively. These biocomposites have potential applications in automotive, building construction, and furniture industries. Moreover, the advancement made in abiotic and biotic degradation of PE and PE biocomposites is elucidated to address their environmental impacts. Finally, the paper concludes with insights into the opportunities, challenges, and future perspectives in the sustainable production and utilization of PE and bio-PE biocomposites. In summary, production of PE and bio-PE biocomposites can contribute to a cleaner and sustainable future.


Assuntos
Polietileno , Polietileno/química , Biomassa , Fermentação
14.
Orthop Surg ; 16(6): 1336-1343, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38654387

RESUMO

OBJECTIVE: The reported date in the repeat surgical intervention for adolescent lumbar disc herniation (ALDH) after percutaneous endoscopic lumbar discectomy (PELD) was quite scarce. This study aims to introduce cases of repeat surgeries after PELD for ALDH and assess the incidence, chief causes, repeat surgery methods, and surgical outcomes of repeat surgeries after PELD for ALDH. METHODS: A retrospective multicenter observational study was conducted on patients undergoing repeat surgeries after PELD for ALDH at four tertiary referral hospitals from January 2014 through August 2022. The incidence of repeat surgeries, chief causes, strategies for repeat surgeries, and timing of repeat surgeries were recorded and analyzed. The clinical outcomes were evaluated by the Numeric Rating Scales (NRS) scores and the modified MacNab criteria. Statistical analyses were performed with the Wilcoxon signed-rank test. RESULTS: A total of 23 patients who underwent repeat surgeries after PELD for ALDH were included. The chief causes were re-herniation (homo-lateral re-herniation at the same level, new disc herniation of adjacent level). The repeat surgery methods were revision PELD, micro-endoscopic discectomy (MED), open discectomy and instrumented lumbar inter-body fusion. The NRS scores decreased significantly in follow-up evaluations and these scores demonstrated significant improvement at the last follow-up (p < 0.002). For the modified MacNab criteria, at the last follow-up, 18 patients (78.26%) had an excellent outcome, and the overall success rate was 86.95%. CONCLUSION: This study's data suggest that young patients who underwent repeat surgery improved significantly compared to baseline. The chief cause was re-herniation. Revision PELD was the main surgical procedure, which provides satisfactory clinical results in young patients who underwent repeat surgeries.


Assuntos
Discotomia Percutânea , Endoscopia , Deslocamento do Disco Intervertebral , Vértebras Lombares , Reoperação , Humanos , Deslocamento do Disco Intervertebral/cirurgia , Adolescente , Estudos Retrospectivos , Masculino , Feminino , Vértebras Lombares/cirurgia , Discotomia Percutânea/métodos , Endoscopia/métodos , Adulto Jovem
15.
Cell Death Dis ; 15(4): 244, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575607

RESUMO

The immunosuppressive microenvironment caused by several intrinsic and extrinsic mechanism has brought great challenges to the immunotherapy of pancreatic cancer. We identified GFPT2, the key enzyme in hexosamine biosynthesis pathway (HBP), as an immune-related prognostic gene in pancreatic cancer using transcriptome sequencing and further confirmed that GFPT2 promoted macrophage M2 polarization and malignant phenotype of pancreatic cancer. HBP is a glucose metabolism pathway leading to the generation of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which is further utilized for protein O-GlcNAcylation. We confirmed GFPT2-mediated O-GlcNAcylation played an important role in regulating immune microenvironment. Through cellular proteomics, we identified IL-18 as a key downstream of GFPT2 in regulating the immune microenvironment. Through CO-IP and protein mass spectrum, we confirmed that YBX1 was O-GlcNAcylated and nuclear translocated by GFPT2-mediated O-GlcNAcylation. Then, YBX1 functioned as a transcription factor to promote IL-18 transcription. Our study elucidated the relationship between the metabolic pathway of HBP in cancer cells and the immune microenvironment, which might provide some insights into the combination therapy of HBP vulnerability and immunotherapy in pancreatic cancer.


Assuntos
Interleucina-18 , Neoplasias Pancreáticas , Humanos , Glicosilação , Interleucina-18/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas/metabolismo , Vias Biossintéticas , Hexosaminas , Microambiente Tumoral , Proteína 1 de Ligação a Y-Box/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética
16.
J Am Chem Soc ; 146(14): 9920-9927, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557104

RESUMO

Plastic recycling is critical for waste management and achieving a circular economy, but it entails difficult trade-offs between performance and recyclability. Here, we report a thermoset, poly(α-cyanocinnamate) (PCC), synthesized using Knoevenagel condensation between terephthalaldehyde (TPA) and a triarm cyanoacetate star, that tackles this difficulty by harnessing its intrinsically conjugated and dynamic chemical characteristics. PCCs exhibit extraordinary thermal and mechanical properties with a typical Tg of ∼178 °C, Young's modulus of 3.8 GPa, and tensile strength of 102 MPa, along with remarkable flexibility and dimensional and chemical stabilities. Furthermore, end-of-life PCCs can be selectively degraded and partially recycled back into one starting monomer TPA for a new production cycle or reprocessed through dynamic exchange aided by cyanoacetate chain-ends. This study lays the scientific groundwork for the design of robust and recyclable thermosets, with transformative potential in plastic engineering.

17.
Yi Chuan ; 46(2): 92-108, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340001

RESUMO

Fluorescent RNA is a kind of emerging RNA labeling technique that can be used for in situ labeling and imaging of RNA in live cells, which plays an important role in understanding the function and regulation mechanism of RNA. Biosensing technology based on fluorescent RNA can be applied in dynamic detection of small molecule metabolites and proteins in real time, offering valuable tools for basic life science research and biomedical sensing technology development. In this review, we introduce the development of genetically encoded fluorescent RNA, and the application of fluorescent RNA in RNA imaging and biosensing technology based on fluorescent RNA in biosensing in live cell. Meanwhile, we discuss the direction and challenge of future development of fluorescent RNA technology to provide valuable insights for further development and application of this technology in relevant fields.


Assuntos
Técnicas Biossensoriais , RNA , Técnicas Biossensoriais/métodos , Proteínas , Corantes Fluorescentes
18.
Heliyon ; 10(3): e24986, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333853

RESUMO

Malinzi is the dry ripe seed of Iris Lactea Pall. var. chinensis (Fisch.) Koidz and is a tradtional medicinal plant with significant development and utilization value. A total of 31 compounds from Malinzi have been reported, including flavonoids, quinones, oligostilbenes, and other constituents. Modern pharmacological studies have shown that Malinzi has good activities in anti-tumor, radio-sensitization, boost immunity, anti-oxidation, anti-fertility, and glucolipid metabolism. In this paper, by reviewing the domestic and foreign research literatures of Malinzi and summarizing its traditional uses, chemical constituents, and pharmacological activities, it is expected to provide theoretical reference for the subsequent in-depth research and application of Malinzi.

19.
Plant Cell ; 36(5): 2000-2020, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299379

RESUMO

The flower-infecting fungus Ustilaginoidea virens causes rice false smut, which is a severe emerging disease threatening rice (Oryza sativa) production worldwide. False smut not only reduces yield, but more importantly produces toxins on grains, posing a great threat to food safety. U. virens invades spikelets via the gap between the 2 bracts (lemma and palea) enclosing the floret and specifically infects the stamen and pistil. Molecular mechanisms for the U. virens-rice interaction are largely unknown. Here, we demonstrate that rice flowers predominantly employ chitin-triggered immunity against U. virens in the lemma and palea, rather than in the stamen and pistil. We identify a crucial U. virens virulence factor, named UvGH18.1, which carries glycoside hydrolase activity. Mechanistically, UvGH18.1 functions by binding to and hydrolyzing immune elicitor chitin and interacting with the chitin receptor CHITIN ELICITOR BINDING PROTEIN (OsCEBiP) and co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (OsCERK1) to impair their chitin-induced dimerization, suppressing host immunity exerted at the lemma and palea for gaining access to the stamen and pistil. Conversely, pretreatment on spikelets with chitin induces a defense response in the lemma and palea, promoting resistance against U. virens. Collectively, our data uncover a mechanism for a U. virens virulence factor and the critical location of the host-pathogen interaction in flowers and provide a potential strategy to control rice false smut disease.


Assuntos
Quitina , Flores , Hypocreales , Oryza , Doenças das Plantas , Oryza/microbiologia , Oryza/metabolismo , Oryza/genética , Doenças das Plantas/microbiologia , Quitina/metabolismo , Flores/microbiologia , Hypocreales/patogenicidade , Hypocreales/genética , Hypocreales/metabolismo , Transdução de Sinais , Interações Hospedeiro-Patógeno , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Virulência , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
20.
ACS Appl Mater Interfaces ; 16(8): 11043-11049, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38349718

RESUMO

The nonlinear Hall effect (NLHE) holds immense significance in recognizing the band geometry and its potential applications in current rectification. Recent discoveries have expanded the study from second-order to third-order nonlinear Hall effect (THE), which is governed by an intrinsic band geometric quantity called the Berry Connection Polarizability tensor. Here we demonstrate a giant THE in a misfit layer compound, (SnS)1.17(NbS2)3. While the THE is prohibited in individual NbS2 and SnS due to the constraints imposed by the crystal symmetry and their band structures, a remarkable THE emerges when a superlattice is formed by introducing a monolayer of SnS. The angular-dependent THE and its scaling relationship indicate that the phenomenon could be correlated to the band geometry modulation, concurrently with the symmetry breaking. The resulting strength of THE is orders of magnitude higher compared to recent studies. Our work illuminates the modulation of structural and electronic geometries for novel quantum phenomena through interface engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...