Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 9(33): e2204724, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209387

RESUMO

Sorption-based atmospheric water harvesting (SAWH) holds huge potential due to its freshwater capabilities for alleviating water scarcity stress. The two essential parts, sorbent material and system structure, dominate the water sorption-desorption performance and the total water productivity for SAWH system together. Attributed to the superiorities in aspects of sorption-desorption performance, scalability, and compatibility in practical SAWH devices, hygroscopic porous polymers (HPPs) as next-generation sorbents are recently going through a vast surge. However, as HPPs' sorption mechanism, performance, and applied potential lack comprehensive and accurate guidelines, SAWH's subsequent development is restricted. To address the aforementioned problems, this review introduces HPPs' recent development related to mechanism, performance, and application. Furthermore, corresponding optimized strategies for both HPP-based sorbent bed and coupling structural design are proposed. Finally, original research routes are directed to develop next-generation HPP-based SAWH systems. The presented guidelines and insights can influence and inspire the future development of SAWH technology, further achieving SAWH's practical applications.


Assuntos
Polímeros , Água , Água/química , Adsorção , Porosidade
2.
Chem Soc Rev ; 51(15): 6574-6651, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35815699

RESUMO

Significant progress has been made in direct air capture (DAC) in recent years. Evidence suggests that the large-scale deployment of DAC by adsorption would be technically feasible for gigatons of CO2 capture annually. However, great efforts in adsorption-based DAC technologies are still required. This review provides an exhaustive description of materials development, adsorbent shaping, in situ characterization, adsorption mechanism simulation, process design, system integration, and techno-economic analysis of adsorption-based DAC over the past five years; and in terms of adsorbent development, affordable DAC adsorbents such as amine-containing porous materials with large CO2 adsorption capacities, fast kinetics, high selectivity, and long-term stability under ultra-low CO2 concentration and humid conditions. It is also critically important to develop efficient DAC adsorptive processes. Research and development in structured adsorbents that operate at low-temperature with excellent CO2 adsorption capacities and kinetics, novel gas-solid contactors with low heat and mass transfer resistances, and energy-efficient regeneration methods using heat, vacuum, and steam purge is needed to commercialize adsorption-based DAC. The synergy between DAC and carbon capture technologies for point sources can help in mitigating climate change effects in the long-term. Further investigations into DAC applications in the aviation, agriculture, energy, and chemical industries are required as well. This work benefits researchers concerned about global energy and environmental issues, and delivers perspective views for further deployment of negative-emission technologies.


Assuntos
Aminas , Dióxido de Carbono , Adsorção , Aminas/química , Dióxido de Carbono/química , Cinética , Porosidade
3.
iScience ; 6: 289-298, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30240619

RESUMO

Separation of oil/water mixtures has been one of the leading green technologies for applications such as oil recovery and water purification. Conventional methods to separate oil from water are based on phase separation via physical settlement or distillation. However, challenges still remain in the effective extraction of micron-sized oil droplets dispersed in water, in which case gravity fails to work as separating force. Here, we conformably decorate porous titanium (average pore size 30 µm) with superhydrophilic nanotubes. The resulting three-dimensional superhydrophilic micro channels thus provide a driving force for oil-water separation at the nanotube/emulsion interface, enhancing significantly the water infiltration rate. The high efficiency (>99.95%, with oil droplets of average diameter 10 µm) and strong mechanical durability make the structure a reusable oil/water separator. Our findings pave the way for future applications of oil-in-water emulsion separation, which can be readily scaled up for massive demulsification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...