Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(10): 105153, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36204263

RESUMO

Carbon capture from both stationary emitters and dilute sources is critically needed to mitigate climate change. Carbon dioxide separation methods driven by electrochemical stimuli show promise to sidestep the high-energy penalty and fossil-fuel dependency associated with the conventional pressure and temperature swings. Compared with a batch process, electrochemically mediated carbon capture (EMCC) operating in a continuous flow mode offers greater design flexibility. Therefore, this review introduces key advances in continuous flow EMCC for point source, air, and ocean carbon captures. Notably, the main challenges and future research opportunities for practical implementation of continuous flow EMCC processes are discussed from a multi-scale perspective, from molecules to electrochemical cells and finally to separation systems.

3.
ACS Appl Mater Interfaces ; 13(17): 20260-20268, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33886258

RESUMO

Three-dimensional (3D) printed, hierarchically porous nickel molybdenum (NiMo) electrocatalysts were synthesized and evaluated in a flow-through configuration for the hydrogen evolution reaction (HER) in 1.0 M KOH(aq) in a simple electrochemical H-cell. 3D NiMo electrodes possess hierarchically porous structures because of the resol-based aerogel precursor, which generates superporous carbon aerogel as a catalyst support. Relative to a traditional planar electrode configuration, the flow-through configuration allowed efficient removal of the hydrogen bubbles from the catalyst surface, especially at high operating current densities, and significantly decreased the overpotentials required for HER. An analytical model that accounted for the electrokinetics of HER as well as the mass transport with or without the flow-through configuration was developed to quantitatively evaluate voltage losses associated with kinetic overpotentials and ohmic resistance due to bubble formation in the porous electrodes. The chemical composition, electrochemical surface area (ECSA), and roughness factor (RF) were also systematically studied to assess the electrocatalytic performance of the 3D printed, hierarchically porous NiMo electrodes. An ECSA of 25163 cm2 was obtained with the highly porous structures, and an average overpotential of 45 mV at 10 mA cm-2 was achieved over 24 h by using the flow-through configuration. The flow-through configuration evaluated in the simple H-cell achieved high electrochemical accessible surface areas for electrochemical reactions and provided useful information for adaption of the porous electrodes in flow cells.

4.
ACS Appl Mater Interfaces ; 12(47): 52509-52526, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33169965

RESUMO

Bipolar membranes (BPMs) have the potential to become critical components in electrochemical devices for a variety of electrolysis and electrosynthesis applications. Because they can operate under large pH gradients, BPMs enable favorable environments for electrocatalysis at the individual electrodes. Critical to the implementation of BPMs in these devices is understanding the kinetics of water dissociation that occurs within the BPM as well as the co- and counter-ion crossover through the BPM, which both present significant obstacles to developing efficient and stable BPM-electrolyzers. In this study, a continuum model of multi-ion transport in a BPM is developed and fit to experimental data. Specifically, concentration profiles are determined for all ionic species, and the importance of a water-dissociation catalyst is demonstrated. The model describes internal concentration polarization and co- and counter-ion crossover in BPMs, determining the mode of transport for ions within the BPM and revealing the significance of salt-ion crossover when operated with pH gradients relevant to electrolysis and electrosynthesis. Finally, a sensitivity analysis reveals that the performance and lifetime of BPMs can be improved substantially by using of thinner dissociation catalysts, managing water transport, modulating the thickness of the individual layers in the BPM to control salt-ion crossover, and increasing the ion-exchange capacity of the ion-exchange layers in order to amplify the water-dissociation kinetics at the interface.

5.
Nat Commun ; 11(1): 4412, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887872

RESUMO

Capture and conversion of CO2 from oceanwater can lead to net-negative emissions and can provide carbon source for synthetic fuels and chemical feedstocks at the gigaton per year scale. Here, we report a direct coupled, proof-of-concept electrochemical system that uses a bipolar membrane electrodialysis (BPMED) cell and a vapor-fed CO2 reduction (CO2R) cell to capture and convert CO2 from oceanwater. The BPMED cell replaces the commonly used water-splitting reaction with one-electron, reversible redox couples at the electrodes and demonstrates the ability to capture CO2 at an electrochemical energy consumption of 155.4 kJ mol-1 or 0.98 kWh kg-1 of CO2 and a CO2 capture efficiency of 71%. The direct coupled, vapor-fed CO2R cell yields a total Faradaic efficiency of up to 95% for electrochemical CO2 reduction to CO. The proof-of-concept system provides a unique technological pathway for CO2 capture and conversion from oceanwater with only electrochemical processes.

6.
ChemSusChem ; 10(22): 4657-4663, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-28636780

RESUMO

The interfacial properties of electrolessly deposited Pt nanoparticles (Pt-NPs) on p-Si and p+ -Si electrodes were investigated on the nanometer scale using a combination of scanning probe methods. Atomic force microscopy (AFM) showed highly dispersed Pt-NPs with diameters of 20-150 nm on the Si surface. Conductive AFM measurements showed that only approximately half of the particles exhibited measurable contact currents, with a factor of 103 difference in current observed between particles at a given bias. Local current-voltage measurements revealed a rectifying junction with a resistance ≥10 MΩ at the Pt-NP/p-Si interface, whereas the Pt-NP/p+ -Si samples formed an ohmic junction with a local resistance ≥1 MΩ. The particles were strongly attached to the sample surface in air. However, in an electrolyte, the adhesion of the particles to the surface was substantially lower, and most of the particles had tip-contact currents that varied by a factor of approximately 10. Scanning electrochemical microscopy (SECM) showed smaller but more uniform electrochemical currents for the particles relative to the currents observed by conductive AFM. In accord with the conductive AFM measurements, the SECM measurements showed conductance through the substrate for only a minority of the particles. These results suggest that the electrochemical performance of the electrolessly deposited Pt nanoparticles on Si can be ascribed to: 1) The high resistance of the contact between the particles and the substrate, 2) the low (<50 %) fraction of particles that support high currents, and 3) the low adhesion of the particles to the surface when in contact with the electrolyte.


Assuntos
Técnicas Eletroquímicas/métodos , Eletrodos , Microscopia de Força Atômica/métodos , Nanopartículas/química , Platina , Silício , Propriedades de Superfície
7.
Nanotechnology ; 28(9): 095711, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28139467

RESUMO

Multimodal nano-imaging in electrochemical environments is important across many areas of science and technology. Here, scanning electrochemical microscopy (SECM) using an atomic force microscope (AFM) platform with a nanoelectrode probe is reported. In combination with PeakForce tapping AFM mode, the simultaneous characterization of surface topography, quantitative nanomechanics, nanoelectronic properties, and electrochemical activity is demonstrated. The nanoelectrode probe is coated with dielectric materials and has an exposed conical Pt tip apex of ∼200 nm in height and of ∼25 nm in end-tip radius. These characteristic dimensions permit sub-100 nm spatial resolution for electrochemical imaging. With this nanoelectrode probe we have extended AFM-based nanoelectrical measurements to liquid environments. Experimental data and numerical simulations are used to understand the response of the nanoelectrode probe. With PeakForce SECM, we successfully characterized a surface defect on a highly-oriented pyrolytic graphite electrode showing correlated topographical, electrochemical and nanomechanical information at the highest AFM-SECM resolution. The SECM nanoelectrode also enabled the measurement of heterogeneous electrical conductivity of electrode surfaces in liquid. These studies extend the basic understanding of heterogeneity on graphite/graphene surfaces for electrochemical applications.

8.
ChemSusChem ; 9(17): 2470-9, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27484581

RESUMO

Light-driven generation of H2 O2 only from water and molecular oxygen could be an ideal pathway for clean production of solar fuels. In this work, a mixed metal oxide/graphitic-C3 N4 (MMO@C3 N4 ) composite was synthesized as a dual-functional photocatalyst for both water oxidation and oxygen reduction to generate H2 O2 . The MMO was derived from a NiFe-layered double hydroxide (LDH) precursor for obtaining a high dispersion of metal oxides on the surface of the C3 N4 matrix. The C3 N4 is in the graphitic phase and the main crystalline phase in MMO is cubic NiO. The XPS analyses revealed the doping of Fe(3+) in the dominant NiO phase and the existence of surface defects in the C3 N4 matrix. The formation and decomposition kinetics of H2 O2 on the MMO@C3 N4 and the control samples, including bare MMO, C3 N4 matrix, Ni- or Fe-loaded C3 N4 and a simple mixture of MMO and C3 N4 , were investigated. The MMO@C3 N4 composite produced 63 µmol L(-1) of H2 O2 in 90 min in acidic solution (pH 3) and exhibited a significantly higher rate of production for H2 O2 relative to the control samples. The positive shift of the valence band in the composite and the enhanced water oxidation catalysis by incorporating the MMO improved the light-induced hole collection relative to the bare C3 N4 and resulted in the enhanced H2 O2 formation. The positively shifted conduction band in the composite also improved the selectivity of the two-electron reduction of molecular oxygen to H2 O2 .


Assuntos
Compostos Férricos/química , Peróxido de Hidrogênio/química , Níquel/química , Nitrilas/química , Oxigênio/química , Processos Fotoquímicos , Água/química , Catálise , Grafite/química , Concentração de Íons de Hidrogênio , Oxirredução , Luz Solar
9.
Angew Chem Int Ed Engl ; 55(42): 12974-12988, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27460923

RESUMO

An integrated cell for the solar-driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes at different length and time scales. The overall solar-to-hydrogen (STH) conversion efficiency of such a system depends on the performance and materials properties of the individual components as well as on the component integration, overall device architecture, and system operating conditions. This Review focuses on the modeling- and simulation-guided development and implementation of solar-driven water-splitting prototypes from a holistic viewpoint that explores the various interplays between the components. The underlying physics and interactions at the cell level is are reviewed and discussed, followed by an overview of the use of the cell model to provide target properties of materials and guide the design of a range of traditional and unique device architectures.

10.
ChemSusChem ; 8(3): 544-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25581231

RESUMO

A fully integrated solar-driven water-splitting system comprised of WO3 /FTO/p(+) n Si as the photoanode, Pt/TiO2 /Ti/n(+) p Si as the photocathode, and Nafion as the membrane separator, was simulated, assembled, operated in 1.0 M HClO4 , and evaluated for performance and safety characteristics under dual side illumination. A multi-physics model that accounted for the performance of the photoabsorbers and electrocatalysts, ion transport in the solution electrolyte, and gaseous product crossover was first used to define the optimal geometric design space for the system. The photoelectrodes and the membrane separators were then interconnected in a louvered design system configuration, for which the light-absorbing area and the solution-transport pathways were simultaneously optimized. The performance of the photocathode and the photoanode were separately evaluated in a traditional three-electrode photoelectrochemical cell configuration. The photocathode and photoanode were then assembled back-to-back in a tandem configuration to provide sufficient photovoltage to sustain solar-driven unassisted water-splitting. The current-voltage characteristics of the photoelectrodes showed that the low photocurrent density of the photoanode limited the overall solar-to-hydrogen (STH) conversion efficiency due to the large band gap of WO3 . A hydrogen-production rate of 0.17 mL hr(-1) and a STH conversion efficiency of 0.24 % was observed in a full cell configuration for >20 h with minimal product crossover in the fully operational, intrinsically safe, solar-driven water-splitting system. The solar-to-hydrogen conversion efficiency, ηSTH , calculated using the multiphysics numerical simulation was in excellent agreement with the experimental behavior of the system. The value of ηSTH was entirely limited by the performance of the photoelectrochemical assemblies employed in this study. The louvered design provides a robust platform for implementation of various types of photoelectrochemical assemblies, and can provide an approach to significantly higher solar conversion efficiencies as new and improved materials become available.


Assuntos
Modelos Químicos , Processos Fotoquímicos , Energia Solar , Água/química , Eletroquímica , Hidrogênio/química , Concentração de Íons de Hidrogênio , Reprodutibilidade dos Testes
11.
ACS Comb Sci ; 17(2): 71-5, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25561243

RESUMO

Many energy technologies require electrochemical stability or preactivation of functional materials. Due to the long experiment duration required for either electrochemical preactivation or evaluation of operational stability, parallel screening is required to enable high throughput experimentation. Imposing operational electrochemical conditions to a library of materials in parallel creates several opportunities for experimental artifacts. We discuss the electrochemical engineering principles and operational parameters that mitigate artifacts in the parallel electrochemical treatment system. We also demonstrate the effects of resistive losses within the planar working electrode through a combination of finite element modeling and illustrative experiments. Operation of the parallel-plate, membrane-separated electrochemical treatment system is demonstrated by exposing a composition library of mixed-metal oxides to oxygen evolution conditions in 1 M sulfuric acid for 2 h. This application is particularly important because the electrolysis and photoelectrolysis of water are promising future energy technologies inhibited by the lack of highly active, acid-stable catalysts containing only earth abundant elements.


Assuntos
Ácidos/química , Técnicas Eletroquímicas , Oxigênio/análise , Oxigênio/química , Catálise
12.
ACS Comb Sci ; 16(3): 120-7, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24471712

RESUMO

Combinatorial synthesis and screening of light absorbers are critical to material discoveries for photovoltaic and photoelectrochemical applications. One of the most effective ways to evaluate the energy-conversion properties of a semiconducting light absorber is to form an asymmetric junction and investigate the photogeneration, transport and recombination processes at the semiconductor interface. This standard photoelectrochemical measurement is readily made on a semiconductor sample with a back-side metallic contact (working electrode) and front-side solution contact. In a typical combinatorial material library, each sample shares a common back contact, requiring novel instrumentation to provide spatially resolved and thus sample-resolved measurements. We developed a multiplexing counter electrode with a thin layer assembly, in which a rectifying semiconductor/liquid junction was formed and the short-circuit photocurrent was measured under chopped illumination for each sample in a material library. The multiplexing counter electrode assembly demonstrated a photocurrent sensitivity of sub-10 µA cm(-2) with an external quantum yield sensitivity of 0.5% for each semiconductor sample under a monochromatic ultraviolet illumination source. The combination of cell architecture and multiplexing allows high-throughput modes of operation, including both fast-serial and parallel measurements. To demonstrate the performance of the instrument, the external quantum yields of 1819 different compositions from a pseudoquaternary metal oxide library, (Fe-Zn-Sn-Ti)Ox, at 385 nm were collected in scanning serial mode with a throughput of as fast as 1 s per sample. Preliminary screening results identified a promising ternary composition region centered at Fe0.894Sn0.103Ti0.0034Ox, with an external quantum yield of 6.7% at 385 nm.


Assuntos
Técnicas Eletroquímicas , Fármacos Fotossensibilizantes/química , Teoria Quântica , Técnicas de Química Combinatória , Ferro/química , Óxidos/química , Processos Fotoquímicos , Fármacos Fotossensibilizantes/síntese química , Estanho/química , Titânio/química , Zinco/química
13.
ACS Comb Sci ; 16(2): 47-52, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24372547

RESUMO

Combinatorial synthesis and screening for discovery of electrocatalysts has received increasing attention, particularly for energy-related technologies. High-throughput discovery strategies typically employ a fast, reliable initial screening technique that is able to identify active catalyst composition regions. Traditional electrochemical characterization via current-voltage measurements is inherently throughput-limited, as such measurements are most readily performed by serial screening. Parallel screening methods can yield much higher throughput and generally require the use of an indirect measurement of catalytic activity. In a water-splitting reaction, the change of local pH or the presence of oxygen and hydrogen in the solution can be utilized for parallel screening of active electrocatalysts. Previously reported techniques for measuring these signals typically function in a narrow pH range and are not suitable for both strong acidic and basic environments. A simple approach to screen the electrocatalytic activities by imaging the oxygen and hydrogen bubbles produced by the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is reported here. A custom built electrochemical cell was employed to record the bubble evolution during the screening, where the testing materials were subject to desired electrochemical potentials. The transient of the bubble intensity obtained from the screening was quantitatively analyzed to yield a bubble figure of merit (FOM) that represents the reaction rate. Active catalysts in a pseudoternary material library, (Ni-Fe-Co)Ox, which contains 231 unique compositions, were identified in less than one minute using the bubble screening method. An independent, serial screening method on the same material library exhibited excellent agreement with the parallel bubble screening. This general approach is highly parallel and is independent of solution pH.


Assuntos
Técnicas de Química Combinatória/métodos , Técnicas Eletroquímicas/métodos , Ensaios de Triagem em Larga Escala/métodos , Água/química , Catálise , Água/metabolismo
14.
Rev Sci Instrum ; 84(2): 024102, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23464227

RESUMO

High throughput electrochemical techniques are widely applied in material discovery and optimization. For many applications, the most desirable electrochemical characterization requires a three-electrode cell under potentiostat control. In high throughput screening, a material library is explored by either employing an array of such cells, or rastering a single cell over the library. To attain this latter capability with unprecedented throughput, we have developed a highly integrated, compact scanning droplet cell that is optimized for rapid electrochemical and photoeletrochemical measurements. Using this cell, we screened a quaternary oxide library as (photo)electrocatalysts for the oxygen evolution (water splitting) reaction. High quality electrochemical measurements were carried out and key electrocatalytic properties were identified for each of 5456 samples with a throughput of 4 s per sample.

15.
Proc Natl Acad Sci U S A ; 109(39): 15622-7, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22904185

RESUMO

Physical integration of a Ag electrical contact internally into a metal/substrate/microstructured Si wire array/oxide/Ag/electrolyte photoelectrochemical solar cell has produced structures that display relatively low ohmic resistance losses, as well as highly efficient mass transport of redox species in the absence of forced convection. Even with front-side illumination, such wire-array based photoelectrochemical solar cells do not require a transparent conducting oxide top contact. In contact with a test electrolyte that contained 50 mM/5.0 mM of the cobaltocenium(+/0) redox species in CH(3)CN-1.0 M LiClO(4), when the counterelectrode was placed in the solution and separated from the photoelectrode, mass transport restrictions of redox species in the internal volume of the Si wire array photoelectrode produced low fill factors and limited the obtainable current densities to 17.6 mA cm(-2) even under high illumination. In contrast, when the physically integrated internal Ag film served as the counter electrode, the redox couple species were regenerated inside the internal volume of the photoelectrode, especially in regions where depletion of the redox species due to mass transport limitations would have otherwise occurred. This behavior allowed the integrated assembly to operate as a two-terminal, stand-alone, photoelectrochemical solar cell. The current density vs. voltage behavior of the integrated photoelectrochemical solar cell produced short-circuit current densities in excess of 80 mA cm(-2) at high light intensities, and resulted in relatively low losses due to concentration overpotentials at 1 Sun illumination. The integrated wire array-based device architecture also provides design guidance for tandem photoelectrochemical cells for solar-driven water splitting.


Assuntos
Processos Fotoquímicos , Silício/química , Energia Solar , Água/química , Eletrodos , Eletrólitos/química , Oxirredução
16.
ACS Nano ; 3(12): 4144-54, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19950888

RESUMO

Nanowires of lead telluride (PbTe) were patterned on glass surfaces using lithographically patterned nanowire electrodeposition (LPNE). LPNE involved the fabrication by photolithography of a contoured nickel nanoband that is recessed by approximately 300 nm into a horizontal photoresist trench. Cubic PbTe was then electrodeposited from a basic aqueous solution containing Pb(2+) and TeO(3)(2-) at the nickel nanoband using a cyclic deposition/stripping potential program in which lead-rich PbTe was first deposited in a negative-going potential scan and excess lead was then anodically stripped from the nascent nanowire by scanning in the positive direction to produce near stoichiometric PbTe. Repeating this scanning procedure permitted PbTe nanowires 60-400 nm in width to be obtained. The wire height was controlled over the range of 20-100 nm based upon the nickel film thickness. Nanowires with lengths exceeding 1 cm were prepared in this study. We report the characterization of these nanowires using X-ray diffraction, transmission electron microscopy and electron diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy (XPS). The surface chemical composition of PbTe nanowires was monitored by XPS as a function of time during the exposure of these nanowires to laboratory air. One to two monolayers of a mixed Pb and Te oxide are formed during a 24 h exposure. The electrical conductivity of PbTe nanowires was strongly affected by air oxidation, declining from an initial value of 2.0(+/-1.5) x 10 (4) S/m by 61% (for nanowires with a 20 nm thickness), 55% (for 40 nm), and 12% (for 60 nm).


Assuntos
Cristalização/métodos , Chumbo/química , Nanotecnologia/métodos , Nanotubos/ultraestrutura , Telúrio/química , Titânio/química , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotubos/química , Tamanho da Partícula , Propriedades de Superfície
17.
Anal Chem ; 81(14): 5585-92, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19537714

RESUMO

Parallel arrays of either Au or Pd nanowires were fabricated on glass substrates via the electrochemical process of lithographically patterned nanowire electrodeposition (LPNE) and then characterized with scanning electron microscopy (SEM) and a series of optical diffraction measurements at 633 nm. Nanowires with widths varying from 25 to 150 nm were electrodeposited onto nanoscale Ni surfaces created by the undercut etching of a photoresist pattern on a planar substrate. With the use of a simple transmission grating geometry, up to 60 diffraction orders were observed from the nanowire gratings, with separate oscillatory intensity patterns appearing in the even and odd diffraction orders. The presence of these intensity oscillations is attributed to the LPNE array fabrication process, which creates arrays with alternating interwire spacings of distances d +Delta and d -Delta, where d = 25 microm and the asymmetry Delta varied from 0 to 3.5 microm. The amount of asymmetry could be controlled by varying the LPNE undercut etching time during the creation of the nanoscale Ni surfaces. The Fourier transform of a mathematical model of the nanowire array was used to predict the diffraction intensity patterns and quantitatively determine Delta for any grating. Additional sensitivity and an expanded diffraction order range were obtained through the use of external reflection (ER) and total internal reflection (TIR) diffraction geometries.


Assuntos
Galvanoplastia/instrumentação , Ouro/química , Nanofios/química , Fenômenos Ópticos , Paládio/química , Técnicas Biossensoriais , Vidro/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Propriedades de Superfície
18.
Nano Lett ; 9(5): 2133-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19366192

RESUMO

A protocol is described for forming reconnectable sub-5 nm nanogaps in single ultralong (>100 microm) gold nanowires fabricated by lithographically patterned nanowire electrodeposition (LPNE). During an initial computer-controlled electromigration process, gold nanowires with a rectangular cross-section were transformed by the formation of a constriction at a single point along the 250 microm length of the nanowire, and within this constriction a nanogap of width <5 nm. After this initial nanogap formation, 42% (19 of 45) of the gaps could be reconnected by applying a voltage ramp, restoring the electrical resistance of the original nanowire to within 10%. The voltage threshold for nanogap reconnection was narrowly distributed across multiple wires and nanogaps and in the range from 2 to 3 V. Using voltage programming, it was possible to cycle between the open and closed states for some nanogaps more than 100 times. We propose that the mechanism for reconnection involves the field evaporation of gold, qualitatively as observed previously for metal transfer from the tip of a scanning tunneling microscope.

19.
Chem Commun (Camb) ; (8): 859-73, 2009 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-19214304

RESUMO

The diffraction limit, d approximately lambda/2, constrains the resolution with which structures may be produced using photolithography. Practical limits for d are in the 100 nm range. To circumvent this limit, photolithography can be used to fabricate a sacrificial electrode that is then used to initiate and propagate the growth by electrodeposition of a nanowire. We have described a version of this strategy in which the sacrificial electrode delimits one edge of the nascent nanowire, and a microfabricated "ceiling" constrains its height during growth. The width of the nanowire is determined by the electrochemical deposition parameters (deposition time, applied potential, and solution composition). Using this method, called lithographically patterned nanowire electrodeposition (LPNE), nanowires with minimum dimensions of 11 nm (w) x 5 nm (h) have been obtained. The lengths of these nanowires can be wafer-scale. LPNE has been used to synthesize nanowires composed of bismuth, gold, silver, palladium, platinum, and lead telluride.

20.
Nano Lett ; 8(9): 3017-22, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18712931

RESUMO

The resistance, R, of single gold nanowires was measured in situ during electrooxidation in aqueous 0.10 M sulfuric acid. Electrooxidation caused the formation of a gold oxide that is approximately 0.8 monolayers (ML) in thickness at +1.1 V vs saturated mercurous sulfate reference electrode (MSE) based upon coulometry and ex situ X-ray photoelectron spectroscopic analysis. As the gold nanowires were electrooxidized, R increased by an amount that depended on the wire thickness, ranging from Delta R/ R 0.10V = 14% for a 63 nm (h) x 200 nm (w) wire to 57% for an 18 nm (h) x 95 nm (w) wire at +1.1 V. These nanowires were millimeters in total length, but just 46 microm lengths were exposed to the electrolyte solution. The oxidation process and the accompanying increase in R were reversible: Reduction of the oxide at +0.10 V resulted in recovery of the reduced wire R except for a small resistance offset caused by the dissolution of approximately 0.4 ML of gold during each oxidation/reduction cycle. The measured increase in R during oxidation exceeds by a factor of 4 the predicted increases in R associated with the reduction in cross-sectional area of the nanowire and the expected decrease in the specular scattering parameter, p, at the gold-oxide interface at wire surfaces. We propose that this anomalous increase in R is caused by infiltration of the oxide into the nanowire at grain boundaries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...