Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biotechnol ; 24(1): 40, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849776

RESUMO

BACKGROUND: This study compared the differences of microvesicles (MVs) and microvesicles-delivering Smad7 (Smad7-MVs) on macrophage M1 polarization and fibroblast differentiation in a model of Peyronie's disease (PD). METHODS: Overexpression of Smad7 in rat BMSCs was obtained by pCMV5-Smad7 transfection. MVs were collected from rat BMSCs using ultracentrifugation. In cells, 100 µg/mL of MVs or Smad7-MVs were used to treat the 100 ng/mL of lipopolysaccharide (LPS)-induced RAW264.7 cells or 10 ng/mL of recombinant transforming growth factor-ß1 (TGF-ß1)-induced fibroblasts. The pro-inflammatory cytokines and markers of M1 macrophages were measured in RAW264.7 cells, and the migration and markers of fibroblast differentiation were measured in fibroblasts. In rats, 50 µg of MVs or Smad7-MVs were used to treat the TGF-ß1-induced animals. The pathology of tunica albuginea (TA), the markers of M1 macrophages and fibroblast differentiation in the TA were measured. RESULTS: The MVs or Smad7-MVs treatment suppressed the LPS-induced macrophage M1 polarization and TGF-ß1-induced fibroblast differentiation. Moreover, the Smad7-MVs treatment decreased the fibroblast differentiation compared with the MVs treatment. In the TGF-ß1-induced TA of rats, MVs or Smad7-MVs treatment ameliorated the TA fibrosis by suppressing the macrophage M1 polarization and fibroblast differentiation. There was no significance on the M1-polarized macrophages between the MVs treatment and the Smad7-MVs treatment. Meanwhile, the Smad7-MVs treatment had an edge in terms of suppressing the fibroblast differentiation in the TGF-ß1-induced PD model compared with the MVs treatment. CONCLUSIONS: This study demonstrated that Smad7-MVs treatment had advantages over MVs treatment in suppressing of fibroblast differentiation in a model of PD.


Assuntos
Diferenciação Celular , Micropartículas Derivadas de Células , Modelos Animais de Doenças , Fibroblastos , Macrófagos , Induração Peniana , Proteína Smad7 , Fator de Crescimento Transformador beta1 , Animais , Induração Peniana/metabolismo , Induração Peniana/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Ratos , Masculino , Proteína Smad7/metabolismo , Proteína Smad7/genética , Camundongos , Micropartículas Derivadas de Células/metabolismo , Células RAW 264.7 , Fator de Crescimento Transformador beta1/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Ratos Sprague-Dawley , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia
2.
Biochem Genet ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315264

RESUMO

Focal segmental glomerulosclerosis (FSGS) is a leading kidney disease, clinically associated with proteinuria and progressive renal failure. The occurrence of this disease is partly related to gene mutations. We describe a single affected family member who presented with FSGS. We used high-throughput sequencing, sanger sequencing to identify the pathogenic mutations, and a systems genetics analysis in the BXD mice was conducted to explore the genetic regulatory mechanisms of pathogenic genes in the development of FSGS. We identified high urinary protein (++++) and creatinine levels (149 µmol/L) in a 29-year-old male diagnosed with a 5-year history of grade 2 hypertension. Histopathology of the kidney biopsy showed stromal hyperplasia at the glomerular segmental sclerosis and endothelial cell vacuolation degeneration. Whole-exome sequencing followed by Sanger sequencing revealed a heterozygous missense mutation (c.643C > T) in exon 2 of TRPC6, leading to the substitution of arginine with tryptophan at position 215 (p.Arg215Trp). Systems genetics analysis of the 53 BXD mice kidney transcriptomes identified Pygm as the upstream regulator of Trpc6. Those two genes are jointly involved in the regulation of FSGS mainly via Wnt and Hippo signaling pathways. We present a novel variant in the TRPC6 gene that causes FSGS. Moreover, our data suggested TRPC6 works with PYGM, as well as Wnt and Hippo signaling pathways to regulate renal function, which could guide future clinical prevention and targeted treatment for FSGS outcomes.

4.
J Cell Mol Med ; 27(14): 1947-1958, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37378426

RESUMO

Prostate cancer (PCa) has a certain degree of heritability, and metastasis occurs as cancer progresses. However, its underlying mechanism remains largely unknown. We sequenced four cases of cancer without metastasis, four metastatic cancer, and four benign hyperplasia tissues as controls. A total of 1839 damaging mutations were identified. Pathway analysis, gene clustering, and weighted gene co-expression network analysis were employed to find characteristics associated with metastasis. Chr19 had the most mutation density and 1p36 had the highest mutation frequency across the genome. These mutations occurred in 1630 genes, including the most frequently mutated genes TTN and PLEC, and dozens of metastasis-related genes, such as FOXA1, NCOA1, CD34, and BRCA2. Ras signalling and arachidonic acid metabolism were uniquely enriched in metastatic cancer. Gene programmes 10 and 11 showed the signatures indicating the occurrence of metastasis better. A module (135 genes) was specifically associated with metastasis. Of them, 67.41% reoccurred in program 10, with 26 genes further retained as the signature genes related to PCa metastasis, including AGR3, RAPH1, SOX14, DPEP1, and UBL4A. Our study provides new molecular perspectives on PCa metastasis. The signature genes and pathways could be served as potential therapeutic targets for metastasis or cancer progression.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , RNA-Seq , Neoplasias da Próstata/patologia , Perfilação da Expressão Gênica , Mutação , Sequência de Bases , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição SOXB2/genética , Fatores de Transcrição SOXB2/metabolismo
5.
Front Bioeng Biotechnol ; 11: 1159498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064219

RESUMO

Introduction: In addition to many cellular processes, Ca2+ is also involved in tumor initiation, progression, angiogenesis, and metastasis. The development of new tools for single-cell Ca2+ measurement could open a new avenue for cancer therapy. Methods: The all-solid-state calcium ion-selective microelectrode (Ca2+-ISµE) based on carbon fiber modified with PEDOT (PSS) as solid-contact was developed in this work, and the characteristics of the Ca2+-ISµE have also been investigated. Results: The Ca2+-ISµE exhibits a stable Nernstian response in CaCl2 solutions in the active range of 1.0 × 10-8 - 3.1 × 10-3 M with a low detection limit of 8.9 × 10-9 M. The Ca2+-ISµE can be connected to a patch clamp to fabricate a single-cell analysis platform for in vivo calcium monitoring of a single renal carcinoma cell. The calcium signal decreased significantly (8.6 ± 3.2 mV, n = 3) with severe fluctuations of 5.9 ± 1.8 mV when the concentration of K+ in the tumor microenvironment is up to 20 mM. Discussion: The results indicate a severe cell response of a single renal carcinoma cell under high K+ stimuli. The detection system could also be used for single-cell analysis of other ions by changing different ion-selective membranes with high temporal resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...