Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1392824, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903184

RESUMO

Objective: To investigate the impact of diaphragmatic breathing combined with limb training on lower limb lymphedema following surgery for gynecological cancer. Methods: From January 2022 to May 2022, 60 patients with lower limb lymphedema post-gynecologic cancer surgery were chosen. They were split into a control group (n = 30) and a treatment group (n = 30). The control group underwent complex decongestive therapy (CDT) for managing lower limb lymphedema after gynecologic cancer surgery, while the treatment group received diaphragmatic breathing combined with limb coordination training alongside CDT. Both groups completed a 4-week treatment regimen. The lower limb lymphedema symptoms were evaluated using the genital, lower limb, buttock, and abdomen (GCLQ) scores; bilateral lower limb circumference measurements; and anxiety and depression scores. Results: Compared to sole CDT administration, individuals undergoing diaphragmatic breathing coupled with limb coordination training experienced notable reductions in scores for the self-perceived symptom assessment questionnaire (GCLQ), bilateral lower limb circumference, as well as anxiety and depression scores. Conclusion: The incorporation of diaphragmatic breathing combined withalongside limb coordination training can accelerate and augment the efficacy of treating lower limb lymphedema post-gynecologic cancer surgery.

2.
Gene ; 907: 148286, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38367852

RESUMO

BACKGROUND: Osteosarcoma (OS), with a peak incidence during the adolescent growth spurt, is correlated with poor prognosis for its high malignancy. The tumor microenvironment (TME) is highly complicated, with frequent interactions between tumor and stromal cells. The cancer-associated fibroblasts (CAFs) in the TME have been considered to actively involve in the progression, metastasis, and drug resistance of OS. This study aimed to characterize cellular heterogeneity and molecular characterization in CAFs subtypes and explore the potential targeting therapeutic strategies to improve the prognosis of OS patients. METHODS: The single-cell atlas of human OS tumor lesions were constructed from the GEO database. Then significant marker genes and potential biological functions for each CAFs subtype were identified and explored using the Seurat R package. Next, by performing the survival analyses and constructing the risk scores for CAFs subtypes, we aimed to identify and characterize the prognostic values of specific marker genes and different CAFs subtypes. Furthermore, we explored the therapeutic targets and innovative drugs targeting different CAFs subtypes based on the GDSC database. Finally, prognoses related CAFs subtypes were further validated through immunohistochemistry (IHC) on clinical OS specimens. RESULTS: Overall, nine main cell clusters and five subtypes of CAFs were identified. The differentially expressed marker genes for each CAFs clusters were then identified. Moreover, through Gene Ontology (GO) enrichment analysis, we defined the CAFs_2 (upregulated CXCL14 and C3), which was closely related to leukocyte migration and chemotaxis, as inflammatory CAFs (iCAFs). Likewise, we defined the CAFs_4 (upregulated CD74, HLA-DRA and HLA-DRB1), which was closely related to antigen process and presentation, as antigen-presenting CAFs (apCAFs). Furthermore, Kaplan-Meier analyses showed that CAFs_2 and CAFs_4 were correlated with poor clinical prognosis of OS patients. Meanwhile, therapeutic drugs targeting CAFs_2 and CAFs_4, such as 17-AAG/Docetaxel/Bleomycin and PHA-793887/NG-25/KIN001-102, were also explored, respectively. Finally, IHC assay confirmed the abundant CAFs_2 and CAFs_4 subtypes infiltration in the OS microenvironment compared with adjacent tissues. CONCLUSION: Our study revealed the diversity, complexity, and heterogeneity of CAFs in OS, and complemented the single-cell atlas in OS TME.


Assuntos
Neoplasias Ósseas , Fibroblastos Associados a Câncer , Osteossarcoma , Adolescente , Humanos , Osteossarcoma/genética , Perfilação da Expressão Gênica , Expressão Gênica , Neoplasias Ósseas/genética , Microambiente Tumoral/genética
3.
Mater Today Bio ; 20: 100675, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37304579

RESUMO

In recent years, immune checkpoint blockades (ICBs) have made great progress in the treatment of cancer. However, most ICBs have not yet been observed to be satisfactory in the treatment of osteosarcoma. Herein, we designed composite nanoparticles (NP-Pt-IDOi) from a reactive oxygen species (ROS) sensitive amphiphilic polymer (PHPM) with thiol-ketal bonds in the main chain to encapsulate a Pt(IV) prodrug (Pt(IV)-C12) and an indoleamine-(2/3)-dioxygenase (IDO) inhibitor (IDOi, NLG919). Once NP-Pt-IDOi enter the cancer cells, the polymeric nanoparticles could dissociate due to the intracellular ROS, and release Pt(IV)-C12 and NLG919. Pt(IV)-C12 induces DNA damage and activates the cGAS-STING pathway, increasing infiltration of CD8+ T cells in the tumor microenvironment. In addition, NLG919 inhibits tryptophan metabolism and enhances CD8+ T cell activity, ultimately activating anti-tumor immunity and enhancing the anti-tumor effects of platinum-based drugs. NP-Pt-IDOi were shown to have superior anti-cancer activity in vitro and in vivo in mouse models of osteosarcoma, providing a new clinical paradigm for combining chemotherapy with immunotherapy for osteosarcoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...