Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 6: 114, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31645968

RESUMO

The signal molecules melatonin and ethylene play key roles in abiotic stress tolerance. The interplay between melatonin and ethylene in regulating salt tolerance and the underlying molecular mechanism of this interplay remain unclear. Here, we found that both melatonin and 1-aminocyclopropane-1-carboxylic acid (ACC, a precursor of ethylene) enhanced the tolerance of grapevine to NaCl; additionally, ethylene participated in melatonin-induced salt tolerance. Further experiments indicated that exogenous treatment and endogenous induction of melatonin increased the ACC content and ethylene production in grapevine and tobacco plants, respectively. The expression of MYB108A and ACS1, which function as a transcription factor and a key gene involved in ethylene production, respectively, was strongly induced by melatonin treatment. Additionally, MYB108A directly bound to the promoter of ACS1 and activated its transcription. MYB108A expression promoted ACC synthesis and ethylene production by activating ACS1 expression in response to melatonin treatment. The suppression of MYB108A expression partially limited the effect of melatonin on the induction of ethylene production and reduced melatonin-induced salt tolerance. Collectively, melatonin promotes ethylene biosynthesis and salt tolerance through the regulation of ACS1 by MYB108A.

2.
BMC Plant Biol ; 19(1): 383, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481025

RESUMO

BACKGROUND: Organic acid secretion is a widespread physiological response of plants to alkalinity. However, the characteristics and underlying mechanism of the alkali-induced secretion of organic acids are poorly understood. RESULTS: Oxalate was the main organic acid synthesized and secreted in grapevine (a hybrid of Vitis amurensis, V. berlandieri and V. riparia) roots, while acetate synthesis and malate secretion were also promoted under NaHCO3 stress. NaHCO3 stress enhanced the H+ efflux rate of grapevine roots, which is related to the plasma membrane H+-ATPase activity. Transcriptomic profiling revealed that carbohydrate metabolism was the most significantly altered biological process under NaHCO3 stress; a total of seven genes related to organic acid metabolism were significantly altered, including two phosphoenolpyruvate carboxylases and phosphoenolpyruvate carboxylase kinases. Additionally, the expression levels of five ATP-binding cassette transporters, particularly ATP-binding cassette B19, and two Al-activated malate transporter 2 s were substantially upregulated by NaHCO3 stress. Phosphoproteomic profiling demonstrated that the altered phosphoproteins were primarily related to binding, catalytic activity and transporter activity in the context of their molecular functions. The phosphorylation levels of phosphoenolpyruvate carboxylase 3, two plasma membrane H+-ATPases 4 and ATP-binding cassette B19 and pleiotropic drug resistance 12 were significantly increased. Additionally, the inhibition of ethylene synthesis and perception completely blocked NaHCO3-induced organic acid secretion, while the inhibition of indoleacetic acid synthesis reduced NaHCO3-induced organic acid secretion. CONCLUSIONS: Our results demonstrated that oxalate was the main organic acid produced under alkali stress and revealed the necessity of ethylene in mediating organic acid secretion. Additionally, we further identified several candidate genes and phosphoproteins responsible for organic acid metabolism and secretion.


Assuntos
Proteínas de Plantas/genética , Proteoma/genética , Bicarbonato de Sódio/metabolismo , Transcriptoma , Vitis/genética , Vitis/metabolismo , Ácidos/metabolismo , Compostos Orgânicos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteoma/metabolismo
3.
Hortic Res ; 5: 41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083356

RESUMO

The role of melatonin in the regulation of fruit ripening and the mechanism involved remain largely unknown. In "Moldova" grape berries, melatonin accumulated rapidly from onset of veraison, reached the maximum at 94 days after bloom (DAB) and then exhibited low levels at late stages of berry ripening. By contrast, abscisic acid (ABA) and hydrogen peroxide (H2O2) exhibited different accumulation patterns, and ethylene was primarily produced immediately before veraison. Further experiments demonstrated that 10 and particularly 100 µM melatonin treatments increased the levels of ABA, H2O2, and ethylene production and promoted berry ripening compared with the control treatment, whereas 0.1 and 1.0 µM melatonin did not lead to clear effects. Additionally, the application of inhibitors indicated that ABA, H2O2, and ethylene participated in the regulation of berry ripening induced by melatonin, and the suppression of ethylene biosynthesis produced the greatest inhibitory effects on melatonin-induced berry ripening compared with those of ABA and H2O2. Melatonin also promoted ethylene production via ABA. In summary, 10 and particularly 100 µM melatonin treatments promoted berry ripening, which was accomplished, at least partially, via the other signaling molecules of ABA, H2O2, and particularly ethylene. This research provides insight into melatonin signaling during berry ripening and may advance the application of melatonin to accelerate berry ripening.

4.
J Agric Food Chem ; 66(27): 7190-7199, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29920074

RESUMO

Gene expression profile, phenolic composition, and antioxidant capacity were evaluated in red-fleshed berries and their wines (RF berries and wines) from new grape genotypes. Transcriptomic analysis revealed that ten metabolic pathways involved in polyphenol synthesis and catabolism were significantly altered, and 13 genes related to the biosynthesis and transport of phenolics were largely upregulated in RF berries compared to that of Cabernet Sauvignon (CS). Expression of MybA1 was associated with anthocyanin accumulation in red flesh. Additionally, RF berries and wines contained higher concentrations of total anthocyanins, phenols, flavonoids, and proanthocyanidins than those in CS berries and wine. Particularly, diglucosides of malvidin, peonidin, delphinidin, and cyanidin were present in red flesh and RF wines, but they were undetectable or present at very low concentrations in CS flesh and wine. Cinnamic acid and ferulic acid were clearly increased in the RF wines compared to those in the CS wine. Additionally, the RF wines had higher antioxidant capacity than that in the CS wine, and total anthocyanin content was significantly correlated to antioxidant capacity. This research provides insight into the mechanisms underlying grape flesh coloration and the composition of phenolic compounds in RF berries and wines.


Assuntos
Antioxidantes/análise , Fenóis/análise , Vitis/química , Vitis/genética , Antocianinas/análise , Cinamatos/análise , Cor , Ácidos Cumáricos/análise , Flavonoides/análise , Frutas/química , Frutas/genética , Regulação da Expressão Gênica de Plantas , Proantocianidinas/análise , Vinho/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...