Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Front Nutr ; 11: 1366525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953045

RESUMO

Objective: The objective of this study was to assess the global burden of disease for developmental and intellectual disabilities caused by iodine deficiency from 1990 to 2019. Methods: Using data from the global burden of disease (GBD) 2019, we conducted a cross-country inequity analysis to examine the worldwide burden of developmental and intellectual disabilities caused by the issue of iodine deficiency from 1990 to 2019. Absolute and relative inequality were assessed by the slope index of inequality and the concentration index, respectively. After summarising the latest evidence, we also projected the age-standardized prevalence and years lived with disability (YLD) rates up to 2030 using the BAPC and INLA packages in R statistical software. Results: In 2019, the global age-standardized prevalence and YLD rates for developmental and intellectual disabilities due to iodine deficiency were 22.54 per 100,000 population (95% UI 14.47 to 29.23) and 4.12 per 100,000 population (95% UI 2.25 to 6.4), respectively. From 1990 to 2019, the age-standardized prevalence and YLD rates of developmental and intellectual disabilities due to iodine deficiency decreased significantly. Geographic distribution showed that areas with lower socio-demographic indices (SDI) were the most affected. The correlation between higher SDI and lower prevalence highlights the role of economic and social factors in the prevalence of the disease. Cross-national inequity analysis shows that disparities persist despite improvements in health inequalities. In addition, projections suggest that the disease burden may decline until 2030. Conclusion: This research underscores the necessity for targeted interventions, such as enhancing iodine supplementation and nutritional education, especially in areas with lower SDI. We aim to provide a foundation for policymakers further to research effective preventative and potential alternative treatment strategies.

2.
Neurochem Res ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824460

RESUMO

Patients suffering from hepatic ischemia-reperfusion injury (HIRI) frequently exhibit postoperative cognitive deficits. Our previous observations have emphasized the diurnal variation in hepatic ischemia-reperfusion injury-induced cognitive impairment, in which gut microbiota-associated hippocampal lipid metabolism plays an important role. Herein, we further investigated the molecular mechanisms involved in the process. Hepatic ischemia-reperfusion surgery was performed under morning (ZT0, 08:00) and evening (ZT12, 20:00). Fecal microbiota transplantation was used to associate HIRI model with pseudo-germ-free mice. The novel object recognition test and Y-maze test were used to assess cognitive function. 16S rRNA gene sequencing and analysis were used for microbial analysis. Western blotting was used for hippocampal protein analysis. Compared with the ZT0-HIRI group, ZT12-HIRI mice showed learning and short term memory impairment, accompanied by down-regulated expression of hippocampal CB1R, but not CB2R. Both gut microbiota composition and microbiota metabolites were significantly different in ZT12-HIRI mice compared with ZT0-HIRI. Fecal microbiota transplantation from the ZT12-HIRI was demonstrated to induce cognitive impairment behavior and down-regulated hippocampal CB1R and ß-arrestin1. Intraperitoneal administration of CB1R inhibitor AM251 (1 mg/kg) down-regulated hippocampal CB1R and caused cognitive impairment in ZT0-HIRI mice. And intraperitoneal administration of CB1R agonist WIN 55,212-2 (1 mg/kg) up-regulated hippocampal CB1R and improved cognitive impairment in ZT12-HIRI mice. In summary, the results suggest that gut microbiota may regulate the diurnal variation of HIRI-induced cognitive function by interfering with hippocampal CB1R.

3.
Front Nutr ; 11: 1366553, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549751

RESUMO

Background: Numerous studies have already identified an association between excessive consumption of red meat and colorectal cancer (CRC). However, there has been a lack of detailed understanding regarding the disease burden linked to diet high in red meat and CRC. Objective: We aim to offer evidence-based guidance for developing effective strategies that can mitigate the elevated CRC burden in certain countries. Methods: We used the data from the Global Burden of Disease (GBD) Study 2019 to evaluate global, regional, and national mortality rates and disability-adjusted Life years (DALYs) related to diet high in red meat. We also considered factors such as sex, age, the socio-demographic index (SDI), and evaluated the cross-national inequalities. Furthermore, we utilized DALYs data from 204 countries and regions to measure cross-country inequalities of CRC by calculating the slope index of inequality and concentration index as standard indicators of absolute and relative inequalities. Discussion: The results show that globally, the age-standardized mortality rate (ASMR) and age-standardized disability adjusted life year rate (ASDR) related to CRC due to diet high in red meat have decreased, with estimated annual percent change (EAPCs) of -0.32% (95% CI -0.37 to -0.28) and-0.18% (95% CI -0.25 to -0.11). Notably, the burden was higher among males and the elderly. The slope index of inequality rose from 22.0 (95% CI 18.1 to 25.9) in 1990 to 32.9 (95% CI 28.3 to 37.5) in 2019 and the concentration index fell from 59.5 (95% CI 46.4 to 72.6) in 1990 to 48.9 (95% CI 34.6 to 63.1) in 2019. Also, according to our projections, global ASDR and ASMR might tend to increase up to 2030. Conclusion: ASMR and ASDR for CRC associated with high red meat diets declined globally from 1990 to 2019, but the absolute number of cases is still rising, with men and the elderly being more affected. CRC associated with diets high in red meat exhibits significant income inequality, placing a disproportionate burden on wealthier countries. Moreover, according to our projections, ASMR and ASDR are likely to increase globally by 2030. In order to address this intractable disease problem, understanding changes in global and regional epidemiologic trends is critical for policy makers and others.

4.
CNS Neurosci Ther ; 30(2): e14610, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334013

RESUMO

AIMS: Hepatic ischemia-reperfusion injury (HIRI) resulting from hepatic inflow occlusion, which is a common procedure in liver surgery is inevitable. Previous research has confirmed that the cognitive dysfunction induced by HIRI is closely related to dysbiosis of the gut microbiota. This research aims to investigate the mechanisms underlying this complication. METHODS: C57BL/6 mice underwent hepatic ischemia experimentally through the occlusion of the left hepatic artery and portal vein. To assess the HDAC2-ACSS2 axis, gut microbiota transplantation. Enzyme-linked immunosorbent assay and LC/MS short-chain fatty acid detection were utilized. RESULTS: The findings indicated a notable decline in ACSS2 expression in the hippocampus of mice experiencing hepatic ischemia-reperfusion injury, emphasizing the compromised acetate metabolism in this particular area. Furthermore, the cognitive impairment phenotype and the dysregulation of the HDAC2-ACSS2 axis could also be transmitted to germ-free mice via fecal microbial transplantation. Enzyme-linked immunosorbent assay revealed reduced Acetyl-coenzyme A (acetyl-CoA) and Acetylated lysine levels in the hippocampus. CONCLUSION: These findings suggest that acetate metabolism is impaired in the hippocampus of HIRI-induced cognitive impairment mice and related to dysbiosis, leading to compromised histone acetylation.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Traumatismo por Reperfusão , Animais , Camundongos , Acetatos/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disbiose/complicações , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/metabolismo
5.
Front Neurol ; 14: 1304153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116113

RESUMO

Background: Spinal cord injuries, often resulting from spine fractures, can lead to severe lifelong symptoms such as paraplegia and even mortality. Over the past few decades, there has been a concerning increase in the annual incidence and mortality rates of spinal cord injuries, which has also placed a growing financial strain on healthcare systems. This review aims to offer a comprehensive overview of spinal cord injuries by estimating their global incidence, prevalence, and the impact in terms of years lived with disability, using data obtained from the 2019 Global Burden of Disease Study. Method: In this study, we utilized data from the 2019 Global Burden of Disease Study, a widely recognized source for global health data. Our methodology involved estimating the global incidence and prevalence of spinal cord injuries while also assessing the impact on years lived with a disability. We analyzed this data comprehensively to identify patterns and trends and made predictions. Finding: This research delved into the evolving trends in the global burden of spinal cord injuries, identified key risk factors, and examined variations in incidence and disability across different Socio-demographic Index (SDI) levels and age groups. Briefly, in 2019, the global incidence and burden of YLDs of SCI significantly increased compared to 1990. While males had higher incidence rates compared to females. Falls were identified as the primary cause of SCI. Trend projections up to 2030 revealed a slight decrease in ASIR for males, an upward trend in age-specific incidence rates for both sexes and a similar pattern in age-standardized YLD rates. Additionally, our findings provided crucial groundwork for shaping future policies and healthcare initiatives, with the goal of mitigating the burden of spinal cord injuries, enhancing patient outcomes, and fortifying prevention efforts. Interpretation: Understanding the global burden of spinal cord injuries is essential for designing effective healthcare policies and prevention strategies. With the alarming increase in prevalence rates and their significant impact on individuals and healthcare systems, this research contributes vital insights to guide future efforts in reducing the incidence of spinal cord injuries, improving the quality of life for affected individuals, and reducing the economic burden on healthcare systems worldwide.

6.
Curr Med Sci ; 43(6): 1247-1257, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38153631

RESUMO

BACKGROUND AND OBJECTIVE: Since its initial report by James Parkinson in 1817, Parkinson's disease (PD) has remained a central subject of research and clinical advancement. The disease is estimated to affect approximately 1% of adults aged 60 and above. Deep brain stimulation, emerging as an alternative therapy for end-stage cases, has offered a lifeline to numerous patients. This review aimed to analyze publications pertaining to the impact of deep brain stimulation on the motor pathway in patients with PD over the last decade. METHODS: Data were obtained from the Web of Science Core Collection through the library of Huazhong University of Science and Technology (China). The search strategy encompassed the following keywords: "deep brain stimulation", "Parkinson's disease", "motor pathway", and "human", from January 1, 2012, to December 1, 2022. Additionally, this review visualized the findings using the Citespace software. RESULTS: The results indicated that the United States, the United Kingdom, Germany, and China were the primary contributors to this research field. University College London, Capital Medical University, and Maastricht University were the top 3 research institutions in the research area. Tom Foltynie ranked first with 6 publications, and the journals of Brain and Brain Stimulation published the greatest number of relevant articles. The prevailing research focal points in this domain, as determined by keywords "burst analysis", "encompassed neuronal activity", "nucleus", "hyper direct pathway", etc. CONCLUSION: This study has provided a new perspective through bibliometric analysis of the deep brain stimulation therapy for treating patients with PD, which can shed light on future research to advance our comprehension of this particular field of study.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Bibliometria , Encéfalo , Vias Eferentes , Doença de Parkinson/terapia
7.
Front Neurosci ; 17: 1206417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397455

RESUMO

Patients with liver disease are prone to various cognitive impairments. It is undeniable that cognitive impairment is often regulated by both the nervous system and the immune system. In this review our research focused on the regulation of mild cognitive impairment associated with liver disease by humoral factors derived from the gastrointestinal tract, and revealed that its mechanisms may be involved with hyperammonemia, neuroinflammation, brain energy and neurotransmitter metabolic disorders, and liver-derived factors. In addition, we share the emerging research progress in magnetic resonance imaging techniques of the brain during mild cognitive impairment associated with liver disease, in order to provide ideas for the prevention and treatment of mild cognitive impairment in liver disease.

8.
Neural Regen Res ; 18(11): 2449-2458, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37282476

RESUMO

Sleep benefits the restoration of energy metabolism and thereby supports neuronal plasticity and cognitive behaviors. Sirt6 is a NAD+-dependent protein deacetylase that has been recognized as an essential regulator of energy metabolism because it modulates various transcriptional regulators and metabolic enzymes. The aim of this study was to investigate the influence of Sirt6 on cerebral function after chronic sleep deprivation (CSD). We assigned C57BL/6J mice to control or two CSD groups and subjected them to AAV2/9-CMV-EGFP or AAV2/9-CMV-Sirt6-EGFP infection in the prelimbic cortex (PrL). We then assessed cerebral functional connectivity (FC) using resting-state functional MRI, neuron/astrocyte metabolism using a metabolic kinetics analysis; dendritic spine densities using sparse-labeling; and miniature excitatory postsynaptic currents (mEPSCs) and action potential (AP) firing rates using whole-cell patch-clamp recordings. In addition, we evaluated cognition via a comprehensive set of behavioral tests. Compared with controls, Sirt6 was significantly decreased (P < 0.05) in the PrL after CSD, accompanied by cognitive deficits and decreased FC between the PrL and accumbens nucleus, piriform cortex, motor cortex, somatosensory cortex, olfactory tubercle, insular cortex, and cerebellum. Sirt6 overexpression reversed CSD-induced cognitive impairment and reduced FC. Our analysis of metabolic kinetics using [1-13C] glucose and [2-13C] acetate showed that CSD reduced neuronal Glu4 and GABA2 synthesis, which could be fully restored via forced Sirt6 expression. Furthermore, Sirt6 overexpression reversed CSD-induced decreases in AP firing rates as well as the frequency and amplitude of mEPSCs in PrL pyramidal neurons. These data indicate that Sirt6 can improve cognitive impairment after CSD by regulating the PrL-associated FC network, neuronal glucose metabolism, and glutamatergic neurotransmission. Thus, Sirt6 activation may have potential as a novel strategy for treating sleep disorder-related diseases.

9.
Front Microbiol ; 14: 1156591, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266023

RESUMO

Introduction: Owing to advancements in non-invasive magnetic resonance imaging, many studies have repeatedly showed that diabetes affects the central nervous system in the presence of peripheral neuropathy, suggesting a common or interacting pathological mechanism for both complications. Methods: We aimed to investigate the role of abnormal gut microbiota in rats with diabetic peripheral neuropathy (DPN) combined with cognitive dysfunction. Glucose-compliant rats with nerve conduction deficits were screened as a successful group of DPN rats. The DPN group was then divided into rats with combined cognitive impairment (CD) and rats with normal cognitive function (NCD) based on the results of the Novel object recognition test. Rat feces were then collected for 16S rRNA gene sequencing of the intestinal flora. Results and Discussion: The results revealed that abnormalities in Firmicutes, Ruminococcaceae, Bacteroidia, and Actinobacteria-like microorganisms may induce DPN complicated by cognitive dysfunction.

10.
Am J Cancer Res ; 13(3): 713-726, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034231

RESUMO

With the emergence of the scientific research field of tumor microenvironment, the idea that tumor growth and propagation cannot be separated from the tumor microenvironment has become common. The autonomic nervous system is involved in the whole process of growth and development of the organism, and it is undeniable that the tumor microenvironment is equally regulated by both the autonomic nervous system and the immune system. Our research focused on the cancer-nerve crosstalk process and revealed the regulatory mechanisms between the autonomic nervous system and prostate, gastric, pancreatic ductal and breast cancers, mainly elucidating that (1) the release of neurotransmitters and their receptors by autonomic nerves may be important for solid tumor progression, and (2) in combination with the latest targeted small molecule imaging technology, we summarized the biological pathways related to neurotransmitters as small molecule tracers to track solid tumor progression. This research focused on combining targeted small molecules and imaging techniques to observe sympathetic and parasympathetic processes that promote or inhibit cancer development, providing new potential therapeutic targets for prostate, gastric, pancreatic ductal and breast cancers. It also provided cutting-edge research evidence for the development of biological small molecule drugs and targeted tracers in cancer therapy.

11.
Hepatol Int ; 17(6): 1645-1658, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37004699

RESUMO

BACKGROUND: Hepatic ischemia-reperfusion injury (HIRI) is a common complication of liver surgery, which can lead to extrahepatic metabolic disorders, such as cognitive impairment. Recent observations have emphasized the critical effects of gut microbial metabolites in regulating the development of liver injury. Herein, we investigated the potential contribution of gut microbiota to HIRI-related cognitive impairment. METHODS: HIRI murine models were established by ischemia-reperfusion surgery in the morning (ZT0, 08:00) and evening (ZT12, 20:00), respectively. Antibiotic-induced pseudo-germ-free mice were gavaged with fecal bacteria of the HIRI models. Behavioral test was used to assess cognitive function. 16S rRNA gene sequencing and metabolomics were used for microbial and hippocampal analysis. RESULTS: Our results established that cognitive impairment caused by HIRI underwent diurnal oscillations; HIRI mice performed poorly on the Y-maze test and the novel object preference test when surgery occurred in the evening compared with the morning. In addition, fecal microbiota transplantation (FMT) from the ZT12-HIRI was demonstrated to induce cognitive impairment behavior. The specific composition and metabolites of gut microbiota were analyzed between the ZT0-HIRI and ZT12-HIRI, and bioinformatic analysis showed that the differential fecal metabolites were significantly enriched in lipid metabolism pathways. After FMT, the hippocampal lipid metabolome between the P-ZT0-HIRI and P-ZT12-HIRI groups was analyzed to reveal a series of lipid molecules with significant differences. CONCLUSIONS: Our findings indicate that gut microbiota are involved in circadian differences of HIRI-related cognitive impairment by affecting hippocampal lipid metabolism.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Hepatopatias , Traumatismo por Reperfusão , Camundongos , Animais , RNA Ribossômico 16S , Metabolismo dos Lipídeos , Hepatopatias/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Disfunção Cognitiva/etiologia , Hipocampo/metabolismo , Lipídeos
12.
Front Aging Neurosci ; 15: 1108205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875700

RESUMO

Objective: To investigate the role of gut microbiota and metabolites in POCD in elderly orthopedic patients, and screen the preoperative diagnostic indicators of gut microbiota in elderly POCD. Method: 40 elderly patients undergoing orthopedic surgery were enrolled and divided into Control group and POCD group following neuropsychological assessments. Gut microbiota was determined by 16S rRNA MiSeq sequencing, and metabolomics of GC-MS and LC-MS was used to screen the differential metabolites. We then analyzed the pathways enriched by metabolites. Result: There was no difference in alpha or beta diversity between Control group and POCD group. There were significant differences in 39 ASV and 20 genera bacterium in the relative abundance. Significant diagnostic efficiency analyzed by the ROC curves were found in 6 genera bacterium. Differential metabolites in the two groups including acetic acid, arachidic acid, pyrophosphate etc. were screened out and enriched to certain metabolic pathways which impacted the cognition function profoundly. Conclusion: Gut microbiota disorders exist preoperatively in the elderly POCD patients, by which there could be a chance to predict the susceptible population. Clinical Trial Registration: [http://www.chictr.org.cn/edit.aspx?pid=133843&htm=4], identifier [ChiCTR2100051162].

14.
CNS Neurosci Ther ; 29 Suppl 1: 31-42, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36585803

RESUMO

AIMS: Patients with acute liver injury (ALI) can develop cognitive dysfunction (CD). The study investigated the role of gut microbiota and cerebral metabolism in ALI mice with and without CD. METHODS: Male C57BL/6 mice that received thioacetamide were classified into ALI mice with (susceptible) or without (unsusceptible) CD-like phenotypes by hierarchical cluster analysis of behavior. The role of gut microbiota was investigated by 16S ribosomal RNA gene sequencing and feces microbiota transplantation (FMT). 1 H-[13 C] NMR and electrophysiology were used to detect the changes in cerebral neurotransmitter metabolic and synaptic transition in neurons or astrocytes. RESULTS: Apromixlay 55% (11/20) of mice developed CD and FMT from the susceptible group transmitted CD to gut microbiota-depleted mice. Alloprevotella was enriched in the susceptible group. GABA production was decreased in the frontal cortex, while hippocampal glutamine was increased in the susceptible group. Altered Escherichia. Shigella and Alloprevotella were correlated with behaviors and cerebral metabolic kinetics and identified as good predictors of ALI-induced CD. The frequencies of both miniature inhibitory and excitatory postsynaptic currents in hippocampal CA1 and prefrontal cortex were decreased in the susceptible group. CONCLUSION: Altered transmitter metabolism and synaptic transmission in the hippocampus and prefrontal cortex and gut microbiota disturbance may lead to ALI-induced CD.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Camundongos , Masculino , Animais , Microbioma Gastrointestinal/fisiologia , Camundongos Endogâmicos C57BL , Fígado , Transplante de Microbiota Fecal
15.
Biomedicines ; 12(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38255161

RESUMO

Circadian rhythm oscillation and the gut microbiota play important roles in several physiological functions and pathology regulations. In this study, we aimed to elucidate the characteristics of diabetic hepatic ischemia-reperfusion injury (HIRI) and the role of the intestinal microbiota in diabetic mice with HIRI. Hepatic ischemia-reperfusion injury surgery was performed at ZT0 or ZT12. The liver pathological score and the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed to evaluate liver injury. We conducted an FMT experiment to examine the role of intestinal microbiota in diabetic mice with HIRI. The 16S rRNA gene sequencing of fecal samples was performed for microbial analysis. Our results showed that hyperglycemia aggravated HIRI in diabetic mice, but there was no diurnal variation seen in diabetic HIRI. We also demonstrated that there were significant alterations in the gut microbiota composition between the diabetic and control mice and that gut microbiota transplantation from diabetic mice had obvious harmful effects on HIRI. These findings provide some useful information for the future research of diabetic mice with HIRI.

16.
Front Microbiol ; 13: 1028913, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419424

RESUMO

Neurocognitive disorders (NCDs) include complex and multifactorial diseases that affect many patients. The 5-hydroxytryptamine (5-HT) neuron system plays an important role in NCDs. Existing studies have reported that para-chlorophenylalanine (PCPA), a 5-HT scavenger, has a negative effect on cognitive function. However, we believe that PCPA may result in NCDs through other pathways. To explore this possibility, behavioral tests were performed to evaluate the cognitive function of PCPA-treated mice, suggesting the appearance of cognitive dysfunction and depression-like behavior. Furthermore, 16S rRNA and metabolomic analyses revealed that dysbiosis and acetate alternation could be related to PCPA-induced NCDs. Our results suggest that not only 5-HT depletion but also dysbiosis and acetate alternation contributed to PCPA-related NCDs. Specifically, the latter promotes NCDs by reducing short-chain fatty acid levels. Together, these findings provide an alternative perspective on PCPA-induced NCDs.

17.
Front Bioeng Biotechnol ; 10: 966138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051591

RESUMO

The technique of organ transplantation is well established and after transplantation the patient might be faced with the problem of nerve regeneration of the transplanted organ. Transplanted organs are innervated by the sympathetic, parasympathetic, and visceral sensory plexuses, but there is a lack of clarity regarding the neural influences on the heart, liver and kidneys and the mechanisms of their innervation. Although there has been considerable recent work exploring the potential mechanisms of nerve regeneration in organ transplantation, there remains much that is unknown about the heterogeneity and individual variability in the reinnervation of organ transplantation. The widespread availability of radioactive nerve tracers has also made a significant contribution to organ transplantation and has helped to investigate nerve recovery after transplantation, as well as providing a direction for future organ transplantation research. In this review we focused on neural tracer imaging techniques in humans and provide some conceptual insights into theories that can effectively support our choice of radionuclide tracers. This also facilitates the development of nuclear medicine techniques and promotes the development of modern medical technologies and computer tools. We described the knowledge of neural regeneration after heart transplantation, liver transplantation and kidney transplantation and apply them to various imaging techniques to quantify the uptake of radionuclide tracers to assess the prognosis of organ transplantation. We noted that the aim of this review is both to provide clinicians and nuclear medicine researchers with theories and insights into nerve regeneration in organ transplantation and to advance imaging techniques and radiotracers as a major step forward in clinical research. Moreover, we aimed to further promote the clinical and research applications of imaging techniques and provide clinicians and research technology developers with the theory and knowledge of the nerve.

18.
Front Mol Neurosci ; 15: 961995, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117908

RESUMO

Chronic Postsurgical Pain (CPSP) is well recognized to impair cognition, particularly memory. Mounting evidence suggests anatomic and mechanistic overlap between pain and cognition on several levels. Interestingly, the drugs currently used for treating chronic pain, including opioids, gabapentin, and NMDAR (N-methyl-D-aspartate receptor) antagonists, are also known to impair cognition. So whether pain-related cognitive deficits have different synaptic mechanisms as those underlying pain remains to be elucidated. In this context, the synaptic transmission in the unsusceptible group (cognitively normal pain rats) was isolated from that in the susceptible group (cognitively compromised pain rats). It was revealed that nearly two-thirds of the CPSP rats suffered cognitive impairment. The whole-cell voltage-clamp recordings revealed that the neuronal excitability and synaptic transmission in the prefrontal cortex and amygdala neurons were enhanced in the unsusceptible group, while these parameters remained the same in the susceptible group. Moreover, the neuronal excitability and synaptic transmission in hippocampus neurons demonstrated the opposite trend. Correspondingly, the levels of synaptic transmission-related proteins demonstrated a tendency similar to that of the excitatory and inhibitory synaptic transmission. Furthermore, morphologically, the synapse ultrastructure varied in the postsynaptic density (PSD) between the CPSP rats with and without cognitive deficits. Together, these observations indicated that basal excitatory and inhibitory synaptic transmission changes were strikingly different between the CPSP rats with and without cognitive deficits.

19.
Am J Transl Res ; 14(7): 4864-4879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958450

RESUMO

Connectomics has developed from an initial observation under an electron microscope to the present well-known medical imaging research approach. The emergence of the most popular transneuronal tracers has further advanced connectomics research. Researchers use the virus trans-nerve tracing method to trace the whole brain, mark the brain nerve circuit and nerve connection structure, and construct a complete nerve conduction pathway. This review assesses current methods of studying cortical to muscle connections using viral neuronal tracers and demonstrates their application in disease diagnosis and prognosis.

20.
Mol Neurobiol ; 59(10): 6211-6227, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35902549

RESUMO

Patients with chronic postsurgical pain (CPSP) frequently exhibit comorbid cognitive deficits. Recent observations have emphasized the critical effects of gut microbial metabolites, like short-chain fatty acids (SCFAs), in regulating cognitive function. However, the underlying mechanisms and effective interventions remain unclear. According to hierarchical clustering and 16S rRNA analysis, over two-thirds of the CPSP rats had cognitive impairment, and the CPSP rats with cognitive impairment had an aberrant composition of gut SCFA-producing bacteria. Then, using feces microbiota transplantation, researchers identified a causal relationship between cognitive-behavioral and microbic changes. Similarly, the number of genera that generated SCFAs was decreased in the feces from recipients of cognitive impairment microbiota. Moreover, treatment with the SCFAs alleviated the cognitive-behavioral deficits in the cognitively compromised pain rats. Finally, we observed that SCFA supplementation improved histone acetylation and abnormal synaptic transmission in the medial prefrontal cortex (mPFC), hippocampal CA1, and central amygdala (CeA) area via the ACSS2 (acetyl-CoA synthetase2)-HDAC2 (histone deacetylase 2) axis. These findings link pain-related cognition dysfunction, gut microbiota, and short-chain fatty acids, shedding fresh insight into the pathogenesis and therapy of pain-associated cognition dysfunction.


Assuntos
Acetato-CoA Ligase , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Histona Desacetilase 2 , Acetato-CoA Ligase/metabolismo , Animais , Cognição , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/fisiologia , Histona Desacetilase 2/metabolismo , Dor Pós-Operatória , RNA Ribossômico 16S , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...