Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(28): e2313089, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38748777

RESUMO

The rapid and responsive capabilities of soft robots in perceiving, assessing, and reacting to environmental stimuli are highly valuable. However, many existing soft robots, designed to mimic humans and other higher animals, often rely on data centers for the modulation of mechanoelectrical transduction and electromechanical actuation. This reliance significantly increases system complexity and time delays. Herein, drawing inspiration from Venus flytraps, a soft robot employing a power modulation strategy is presented for active stimulus reaction, eliminating the need for a data center. This robot achieves mechanoelectrical transduction through Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2) metal-organic framework (MOF) with an ultralow time delay (256 ns) and electromechanical actuation via graphite. The Joule heating effect in graphite is effectively modulated by Ni3(HITP)2 before and after the presence of pressure, thus enabling the stimulus reaction of soft robots. As demonstrated, three soft robots are created: low-level edge tongue robots, Venus flytrap robots, and high-level nerve-center-controlled dragonfly robots. This power modulation strategy inspires designs of edge soft robots and high-level robots with a human-like effective fusion of conditioned and unconditioned reflexes.

2.
Nanoscale ; 16(10): 5409-5420, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38380994

RESUMO

Flexible strain sensors are crucial in fully monitoring human motion, and they should have a wide sensing range and ultra-high sensitivity. Herein, inspired by lyriform organs, a flexible strain sensor based on the double-crack structure is designed. An MXene layer and an Au layer with cracks are constructed on both sides of the insulated polydimethylsiloxane (PDMS) film, forming an equivalent parallel circuit that guarantees the integrity of the conductive path under a large strain. The rapid disconnection of the crack junctions causes a significant change in the resistance value. Due to the effect of cracks on the conductive path, the sensitivity of the sensor is largely improved. Benefiting from the double-crack structure, the as-obtained sensor shows ultra-high sensitivity (maximum gauge factor of up to 14 373.6), a wide working range (up to 21%), a fast response time (183 ms) and excellent dynamical stability (almost no performance loss after 1000 stretching cycles and different frequency cycles). In practical applications, the sensor is applied to different parts of the human body to sense the deformation of the skin, demonstrating its great potential application value in human physiological detection and the human-machine interaction. This study can provide new ideas for preparing high-performance flexible strain sensors.


Assuntos
Biônica , Dispositivos Eletrônicos Vestíveis , Humanos , Condutividade Elétrica , Movimento (Física) , Pele
3.
Adv Sci (Weinh) ; 10(31): e2304121, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37679093

RESUMO

As key interfaces for the disabled, optimal prosthetics should elicit natural sensations of skin touch or proprioception, by unambiguously delivering the multimodal signals acquired by the prosthetics to the nervous system, which still remains challenging. Here, a bioinspired temperature-pressure electronic skin with decoupling capability (TPD e-skin), inspired by the high-low modulus hierarchical structure of human skin, is developed to restore such functionality. Due to the bionic dual-state amplifying microstructure and contact resistance modulation, the MXene TPD e-skin exhibits high sensitivity over a wide pressure range and excellent temperature insensitivity (91.2% reduction). Additionally, the high-low modulus structural configuration enables the pressure insensitivity of the thermistor. Furthermore, a neural model is proposed to neutrally code the temperature-pressure signals into three types of nerve-acceptable frequency signals, corresponding to thermoreceptors, slow-adapting receptors, and fast-adapting receptors. Four operational states in the time domain are also distinguished after the neural coding in the frequency domain. Besides, a brain-like machine learning-based fusion process for frequency signals is also constructed to analyze the frequency pattern and achieve object recognition with a high accuracy of 98.7%. The TPD neural system offers promising potential to enable advanced prosthetic devices with the capability of multimodality-decoupling sensing and deep neural integration.


Assuntos
Pele , Dispositivos Eletrônicos Vestíveis , Humanos , Módulo de Elasticidade , Pele/química , Tato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...