Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 8: 630081, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33778014

RESUMO

Over the past two decades, scholars developed various unmanned sailboat platforms, but most of them have specialized designs and controllers. Whereas these robotic sailboats have good performance with open-source designs, it is actually hard for interested researchers or fans to follow and make their own sailboats with these open-source designs. Thus, in this paper, a generic and flexible unmanned sailboat platform with easy access to the hardware and software architectures is designed and tested. The commonly used 1-m class RC racing sailboat was employed to install Pixhawk V2.4.8, Arduino Mega 2,560, GPS module M8N, custom-designed wind direction sensor, and wireless 433 Mhz telegram. The widely used open-source hardware modules were selected to keep reliable and low-cost hardware setup to emphasize the generality and feasibility of the unmanned sailboat platform. In software architecture, the Pixhawk V2.4.8 provided reliable states' feedback. The Arduino Mega 2,560 received estimated states from Pixhawk V2.4.8 and the wind vane sensor, and then controlled servo actuators of rudder and sail using simplified algorithms. Due to the complexity of introducing robot operating system and its packages, we designed a generic but real-time software architecture just using Arduino Mega 2,560. A suitable line-of-sight guidance strategy and PID-based controllers were used to let the autonomous sailboat sail at user-defined waypoints. Field tests validated the sailing performance in facing WRSC challenges. Results of fleet race, station keeping, and area scanning proved that our design and algorithms could control the 1-m class RC sailboat with acceptable accuracy. The proposed design and algorithms contributed to developing educational, low-cost, micro class autonomous sailboats with accessible, generic, and flexible hardware and software. Besides, our sailboat platform also facilitates readers to develop similar sailboats with more focus on their missions.

2.
IEEE Trans Cybern ; 50(5): 1887-1899, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-30668513

RESUMO

This paper addresses the problem of robust bottom following control for a flight-style autonomous underwater vehicle (AUV) subject to system uncertainties, actuator dynamics, and input saturation. First, the actuator dynamics that is approximated by a first-order differential equation is inserted into the AUV dynamics model, which renders a high-order nonlinear dynamics analysis and design in the model-based backstepping controller by utilizing guidance errors. Second, to overcome the shaking control behavior resulted by the model-based high-order derivative calculation, a fuzzy approximator-based model-free controller is proposed, in order to online approximate the unknown part of the ideal backstepping architecture. In addition, the adaptive error estimation technology is resorted to compensate the system approximation error, ensuring that all the position and orientation errors of robust bottom following control tend to zero. Third, to further tackle the potential unstable control behavior from inherent saturation of control surfaces driven by rudders, an additional adaptive fuzzy compensator is introduced, in order to compensate control truncation between the unsaturated and saturation inputs. Subsequently, Lyapunov theory and Barbalat lemma are adopted to synthesize asymptotic stability of the entire bottom following control system. Finally, comparative numerical simulations with different controllers, environmental disturbances and initial states are provided to illustrate adaptability and robustness of the proposed bottom following controller for a flight-style AUV with saturated actuator dynamics.

3.
ISA Trans ; 100: 28-37, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31837809

RESUMO

This paper discusses the problem of adaptive trajectory tracking control for remotely operated vehicles (ROVs). Considering thruster dynamics, a third-order state space equation is used to describe the dynamic model of ROVs. For the problem of unknown dynamics and partially known input gain, an adaptive sliding mode control design scheme based on RBF neural networks is developed using a backstepping design technique. Because of the saturation constraints of the thrusters, a first-order auxiliary state system is applied, and subsequently, a saturation factor is constructed for designing adaptive laws to ensure the stability of the adaptive trajectory tracking system when the thrusters are saturated. The proposed controller guaranteed that trajectory tracking errors are uniformly ultimately bounded (UUD). Finally, the effectiveness of the proposed controller is verified by simulations.

4.
ISA Trans ; 71(Pt 2): 196-205, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28941951

RESUMO

In this study, a novel decentralized adaptive full-order sliding mode control framework is proposed for the robust synchronized formation motion of multiple unmanned aerial vehicles (UAVs) subject to system uncertainty. First, a full-order sliding mode surface in a decentralized manner is designed to incorporate both the individual position tracking error and the synchronized formation error while the UAV group is engaged in building a certain desired geometric pattern in three dimensional space. Second, a decentralized virtual plant controller is constructed which allows the embedded low-pass filter to attain the chattering free property of the sliding mode controller. In addition, robust adaptive technique is integrated in the decentralized chattering free sliding control design in order to handle unknown bounded uncertainties, without requirements for assuming a priori knowledge of bounds on the system uncertainties as stated in conventional chattering free control methods. Subsequently, system robustness as well as stability of the decentralized full-order sliding mode control of multiple UAVs is synthesized. Numerical simulation results illustrate the effectiveness of the proposed control framework to achieve robust 3D formation flight of the multi-UAV system.

5.
Sensors (Basel) ; 16(8)2016 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-27556465

RESUMO

The changes of the seabed environment caused by a natural disaster or human activities dramatically affect the life span of the subsea buried cable. It is essential to track the cable route in order to inspect the condition of the buried cable and protect its surviving seabed environment. The magnetic sensor is instrumental in guiding the remotely-operated vehicle (ROV) to track and inspect the buried cable underseas. In this paper, a novel framework integrating the underwater cable localization method with the magnetic guidance and control algorithm is proposed, in order to enable the automatic cable tracking by a three-degrees-of-freedom (3-DOF) under-actuated autonomous underwater vehicle (AUV) without human beings in the loop. The work relies on the passive magnetic sensing method to localize the subsea cable by using two tri-axial magnetometers, and a new analytic formulation is presented to compute the heading deviation, horizontal offset and buried depth of the cable. With the magnetic localization, the cable tracking and inspection mission is elaborately constructed as a straight-line path following control problem in the horizontal plane. A dedicated magnetic line-of-sight (LOS) guidance is built based on the relative geometric relationship between the vehicle and the cable, and the feedback linearizing technique is adopted to design a simplified cable tracking controller considering the side-slip effects, such that the under-actuated vehicle is able to move towards the subsea cable and then inspect its buried environment, which further guides the environmental protection of the cable by setting prohibited fishing/anchoring zones and increasing the buried depth. Finally, numerical simulation results show the effectiveness of the proposed magnetic guidance and control algorithm on the envisioned subsea cable tracking and the potential protection of the seabed environment along the cable route.

6.
Planta ; 242(1): 203-13, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25893869

RESUMO

MAIN CONCLUSION: The involvement of OsKASI in FA synthesis is found to play a critical role in root development of rice. The root system plays important roles in plant nutrient and water acquisition. However, mechanisms of root development and molecular regulation in rice are still poorly understood. Here, we characterized a rice (Oryza sativa L.) mutant with shortened roots due to a defect in cell elongation. Map-based cloning revealed that the mutation occurred in a putative 3-oxoacyl-synthase, an ortholog of ß-ketoacyl-[acyl carrier protein] synthase I (KASI) in Arabidopsis, thus designated as OsKASI. OsKASI was found to be ubiquitously expressed in various tissues throughout the plant and OsKASI protein was localized in the plastid. In addition, OsKASI deficiency resulted in reduced fertility and a remarkable change in fatty acid (FA) composition and contents in roots and seeds. Our results demonstrate that involvement of OsKASI in FA synthesis is required for root development in rice.


Assuntos
Proteína de Transporte de Acila/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Cromossomos de Plantas/genética , Clonagem Molecular , Ácidos Graxos/biossíntese , Fertilidade , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Mutação/genética , Fenótipo , Desenvolvimento Vegetal , Proteínas de Plantas/isolamento & purificação , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...