Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroimmune Pharmacol ; 19(1): 21, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771510

RESUMO

The neurotoxicity of Semen Strychni has been reported recently in several clinical cases. Therefore, this study was conducted to investigate the role of HMGB1 in a model of neurotoxicity induced by Semen Strychni and to assess the potential alleviating effects of glycyrrhizic acid (GA), which is associated with the regulation of HMGB1 release. Forty-eight SD rats were intraperitoneally injected with Semen Strychni extract (175 mg/kg), followed by oral administration of GA (50 mg/kg) for four days. After treatment of SS and GA, neuronal degeneration, apoptosis, and necrosis were observed via histopathological examination. Inflammatory cytokines (TNF-α and IL-1ß), neurotransmitter associated enzymes (MAO and AChE), serum HMGB1, nuclear and cytoplasmic HMGB1/ph-HMGB1, and the interaction between PP2A, PKC, and HMGB1 were evaluated. The influence of the MAPK pathway was also examined. As a result, this neurotoxicity was characterized by neuronal degeneration and apoptosis, the induction of pro-inflammatory cytokines, and a reduction in neurotransmitter-metabolizing enzymes. In contrast, GA treatment significantly ameliorated the abovementioned effects and alleviated nerve injury. Furthermore, Semen Strychni promoted HMGB1 phosphorylation and its translocation between the nucleus and cytoplasm, thereby activating the NF-κB and MAPK pathways, initiating various inflammatory responses. Our experiments demonstrated that GA could partially reverse these effects. In summary, GA acid alleviated Semen Strychni-induced neurotoxicity, possibly by inhibiting HMGB1 phosphorylation and preventing its release from the cell.


Assuntos
Ácido Glicirrízico , Proteína HMGB1 , Ratos Sprague-Dawley , Animais , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Proteína HMGB1/metabolismo , Proteína HMGB1/antagonistas & inibidores , Ratos , Masculino , Fosforilação/efeitos dos fármacos , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/metabolismo
2.
Biomed Pharmacother ; 149: 112884, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35358800

RESUMO

Semen Strychni has long been used for the treatment of rheumatoid arthritis, facioplegia and myasthenia gravis due to its anti-inflammation and anti-nociceptive properties in China. However, the fatal neurotoxicity of Semen Strychni has limited its wider clinical application. To investigate the acute toxicity induced by Semen Strychni and the detoxification of liquorice, we evaluated inflammation, oxidative stress and the translocation of high mobility group box 1 (HMGB1) in rats. As a result, there were obvious oxidative stress and inflammation in hippocampus after the Semen Strychni extracts (STR) treatment in rats. Liquorice extracts (LE) and its three active monomers - glycyrrhizic acid (GA), liquiritigenin (LIQ), isoliquiritigenin (ISL) showed the potential for mitigating STR-induced neurotoxicity. HMGB1 levels in cytoplasm and serum and the levels of two downstream receptors RAGE and TLR4 were significantly increased after STR treatment. Through using LE and the monomers, the nucleocytoplasmic transport and release of HMGB1 were inhibited. In addition, the binding between HMGB1 and TLR4 was weakened in detoxification groups comparing with the STR group. Taken together, these findings indicated that liquorice and its active components alleviated acute neurotoxicity induced by Semen Strychni partly via HMGB1-related pathway.


Assuntos
Glycyrrhiza uralensis , Síndromes Neurotóxicas , Extratos Vegetais , Sementes , Animais , Glycyrrhiza/química , Proteína HMGB1 , Inflamação , Síndromes Neurotóxicas/etiologia , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Ratos , Sementes/toxicidade , Receptor 4 Toll-Like
3.
Front Pharmacol ; 12: 762290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867385

RESUMO

Acute neurotoxicity of Semen Strychni can result in sudden death in epilepsy. The detoxification method and mechanism of Semen Strychni acute poisoning have not been clarified. This experiment focused on the mechanism of Semen Strychni neurotoxicity and the alleviation effects of isoliquiritigenin. The rats were intraperitoneally injected with Semen Strychni extract (125 mg/kg), followed by oral administration of isoliquiritigenin (50 mg/kg) for 7 days. FJ-B staining was used to evaluate the degree of injury on hippocampus neurons. The concentration of monoamines, amino acids, and choline neurotransmitters, the Dopamine (DA) and 5-hydroxytryptamine (5-HT) metabolic pathway in the hippocampus, cerebellum, striatum, prefrontal cortex, hypothalamus, serum, and plasma were detected by LC-MS/MS. The expression of neurotransmitter metabolic enzymes [catechol-O-methyl transferase (COMT) and monoamine oxidase (MAO)] and neurotransmitter receptors [glutamate N-methyl-D-aspartic acid receptors (NMDARs) and gamma-aminobutyric acid type A receptor (GABRs)] were, respectively determined using ELISA and qRT-PCR. The results indicated that Semen Strychni induced neuronal degeneration in the hippocampal CA1 region. Meanwhile, Semen Strychni inhibited the mRNA expression of NMDAR1, NMDAR2A, NMDAR2B, GABRa1, GABRb2 and reduced the level of MAO, which disrupted the DA and 5-HT metabolic pathway. However, isoliquiritigenin reversed these effects. In summary, isoliquiritigenin showed alleviation effects on Semen Strychni-induced neurotoxicity, which could be attributed to restoring neurotransmitters metabolic pathway, most likely through the activation of NMDA receptors.

4.
RSC Adv ; 10(72): 44398-44407, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-35517145

RESUMO

Semen Strychni, a traditional Chinese medicine (TCM), has been widely used to treat paraplegia, facial nerve palsy and myasthenia gravis. However, its clinical application is greatly limited due to its fatal toxicity. To investigate the acute toxicity of Semen Strychni and the detoxification effect of licorice, a high-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF/MS) based urinary metabolomics method was developed in this study. After intraperitoneal injection to rats with Semen Strychni extract, the serum biochemical indexes were changed significantly, the liver and kidney showed severe necrosis and edema. Then the poisoned rat model was subsequently used for metabolomics research. Through principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), we finally identified 19 endogenous differential metabolites involved in amino acid metabolism, glycerophospholipid metabolism, tricarboxylic acid (TCA) cycle, oxidative stress and energy metabolism. In addition, 4 exogenous compounds from Semen Strychni (3 prototypes and 1 metabolite) were also identified in the present study. Results showed that the alterations of 23 compounds caused by Semen Strychni were significantly reversed after licorice treatment, which indicated that restoring the endogenous metabolic disorder and accelerating the metabolism of the main toxic components might be the possible detoxification mechanisms of licorice. This study may provide an integral understanding for the acute toxicity of Semen Strychni and the detoxification effect of licorice, thereby contributing to the clinical use of Semen Strychni and licorice.

5.
J Pharmacol Sci ; 140(1): 54-61, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31105024

RESUMO

The wide spread use of central nervous system (CNS) drugs has caused thousands of deaths in clinical practice while there are few antidotes or effective treatments to decrease their accumulation in CNS. In this study, we used amitriptyline (AMI) and dexamethasone (DEX) as the corresponding poisoning and pre-protecting drugs, respectively, to study whether DEX has the potential to reduce AMI accumulation in brain. By measuring the pharmacokinetic data of AMI and its main metabolite nortriptyline (NOR), we found that DEX possibly accelerated the metabolism and elimination of AMI with minimal effects on the concentrations of NOR in blood. Nevertheless, the results indicated that DEX reduced the brain/plasma concentration ratio of AMI and NOR, even if the plasma concentration of NOR had an upward trend. Western blot results showed the overexpression of cyp3a2 and P-gp in rat liver and brain capillaries tissues. We propose that cyp3a2 and P-gp could be upregulated in the liver and blood-brain barrier (BBB) when using DEX. Further experiments suggest that DEX may serve as the ligand of PXR to induce P-gp expression.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Amitriptilina/farmacocinética , Antidepressivos Tricíclicos/farmacocinética , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Citocromo P-450 CYP3A/metabolismo , Dexametasona/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Amitriptilina/sangue , Amitriptilina/metabolismo , Amitriptilina/intoxicação , Animais , Antidepressivos Tricíclicos/sangue , Antidepressivos Tricíclicos/metabolismo , Antidepressivos Tricíclicos/intoxicação , Encéfalo/irrigação sanguínea , Capilares/metabolismo , Citocromo P-450 CYP3A/genética , Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Masculino , Ratos Sprague-Dawley , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...