Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(21): 5140-5149, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38712564

RESUMO

Although acceptor-donor-acceptor (A-D-A)-type molecules offer advantages in constructing NIR absorbing photothermal agents (PTAs) due to their strong intramolecular charge transfer and molecular planarity, their applications in photothermal therapy (PTT) of tumors remain insufficiently explored. In particular, the influence of ESP distribution on the optical properties of A-D-A photosensitizers has not been investigated. Herein, we analyze and compare the difference in ESP distribution between A-D-A-type small molecules and polymers to construct NIR absorbing PTAs with a high extinction coefficient (ε) and high photothermal conversion efficiency (PCE). The calculation results of density functional theory (DFT) indicate that the large ESP difference makes A-D-A-type small molecules superior to their polymer counterparts in realizing tight molecular packing and strong NIR absorbance. Among the as-prepared nanoparticles (NPs), Y6 NPs exhibited an obvious bathochromic shift of absorption peak from 711 nm to 822 nm, with the NIR-II emission extended to 1400 nm. Moreover, a high ε value of 5.69 L g-1 cm-1 and a PCE of 66.3% were attained, making Y6 NPs suitable for PTT. With a concentration of 100 µg mL-1, Y6 NPs in aqueous dispersion yielded a death rate of 93.4% for 4T1 cells upon 808 nm laser irradiation (1 W cm-2) for 10 min, which is comparable with the best results of recently reported PTT agents.


Assuntos
Raios Infravermelhos , Terapia Fototérmica , Eletricidade Estática , Camundongos , Animais , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Antineoplásicos/química , Antineoplásicos/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Nanopartículas/química , Humanos , Ensaios de Seleção de Medicamentos Antitumorais , Tamanho da Partícula , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Estrutura Molecular
2.
Adv Sci (Weinh) ; 10(34): e2304673, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37882326

RESUMO

Cathode interlayers (CILs) play a crucial role in improving the photovoltaic efficiency and stability of OSCs. CILs generally consists of two kinds of materials, interfacial dipole-based CILs and SPS-based CILs. With good charge transporting ability, excellent compatibility with large-area processing methods, and highly tunable optoelectronic properties, the SPS-based CILs exhibit remarkable superiorities to their interfacial dipole-based counterparts in practical use, making them promising candidate in developing efficient CILs for OSCs. This mini-review highlights the great potential of SPS-based CILs in OSC applications and elucidates the working mechanism and material design strategy of SPS materials. Afterward, the SPS-based CIL materials are summarized and discussed in four sections, including organic small molecules, conjugated polymers, nonconjugated polymers, and TMOs. The structure-property-performance relationship of SPS-based CIL materials is revealed, which may provide readers new insight into the molecular design of SPS-based CILs. The mechanisms to endow SPS-based CILs with thickness insensitivity, resistance to environmental erosion, and photo-electric conversion ability are also elucidated. Finally, after a brief summary, the remaining issues and the prospects of SPS-based CILs are suggested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...