Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39000830

RESUMO

Millimeter-wave radar-based identification technology has a wide range of applications in persistent identity verification, covering areas such as security production, healthcare, and personalized smart consumption systems. It has received extensive attention from the academic community due to its advantages of being non-invasive, environmentally insensitive and privacy-preserving. Existing identification algorithms mainly rely on a single signal, such as breathing or heartbeat. The reliability and accuracy of these algorithms are limited due to the high similarity of breathing patterns and the low signal-to-noise ratio of heartbeat signals. To address the above issues, this paper proposes an algorithm for multimodal fusion for identity recognition. This algorithm extracts and fuses features derived from phase signals, respiratory signals, and heartbeat signals for identity recognition purposes. The spatial features of signals with different modes are first extracted by the residual network (ResNet), after which these features are fused with a spatial-channel attention fusion module. On this basis, the temporal features are further extracted with a time series-based self-attention mechanism. Finally, the feature vectors of the user's vital sign modality are obtained to perform identity recognition. This method makes full use of the correlation and complementarity between different modal signals to improve the accuracy and reliability of identification. Simulation experiments show that the algorithm identity recognition proposed in this paper achieves an accuracy of 94.26% on a 20-subject self-test dataset, which is much higher than that of the traditional algorithm, which is about 85%.


Assuntos
Algoritmos , Radar , Humanos , Processamento de Sinais Assistido por Computador , Frequência Cardíaca/fisiologia , Respiração
2.
Sensors (Basel) ; 23(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37765926

RESUMO

Noncontact heart rate monitoring techniques based on millimeter-wave radar have advantages in unique medical scenarios. However, the accuracy of the existing noncontact heart rate estimation methods is still limited by interference, such as DC offsets, respiratory harmonics, and environmental noise. Additionally, these methods still require longer observation times. Most deep learning methods related to heart rate estimation still need to collect more heart rate marker data for training. To address the above problems, this paper introduces a radar signal-based heart rate estimation network named the "masked phase autoencoders with a vision transformer network" (MVN). This network is grounded on masked autoencoders (MAEs) for self-supervised pretraining and a vision transformer (ViT) for transfer learning. During the phase preprocessing stage, phase differencing and interpolation smoothing are performed on the input phase signal. In the self-supervised pretraining step, masked self-supervised training is performed on the phase signal using the MAE network. In the transfer learning stage, the encoder segment of the MAE network is integrated with the ViT network to enable transfer learning using labeled heart rate data. The innovative MVN offers a dual advantage-it not only reduces the cost associated with heart rate data acquisition but also adeptly addresses the issue of respiratory harmonic interference, which is an improvement over conventional signal processing methods. The experimental results show that the process in this paper improves the accuracy of heart rate estimation while reducing the requisite observation time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...