Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(4): 2646-2653, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232312

RESUMO

Ammonia reforming of light alkane is conventionally employed for HCN production where coproduct H2 is burned for heating owing to the high reaction temperature (1200 °C) of such a highly endothermic process. Here, we show that a Ni3Ga1 intermetallic compound (IMC) catalyst is highly efficient for such a reaction, realizing efficient conversion of C1-C3 alkanes at 575-750 °C. This makes it feasible for on-purpose COx-free H2 production assuming that ammonia, as an H2 carrier, is ubiquitously available from renewable energy. At 650 °C and an alkane/ammonia ratio of 1/2, ethane and propane conversion of ∼20% and methane conversion of 13% were obtained (with nearly 100% HCN selectivity for methane and ethane) over the unsupported Ni3Ga1 IMC, which also shows high stability due to the absence of coke deposition. This breakthrough is achieved by employing a stoichiometric Ni3Ga1 mixed oxalate solid solution as the precursor for the Ni3Ga1 IMC.

2.
ACS Nano ; 17(20): 19903-19913, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37801700

RESUMO

Designing a solid-state electrolyte that satisfies the operating requirements of solid-state batteries is key to solid-state battery applications. The consensus is that solid-state electrolytes need to allow fast ion transport, while providing better interfacial compatibility and mechanical tolerance. Herein, a simple but effective strategy is proposed, combining hard and soft component polymer systems, to exploit a solid polymer electrolyte (SPE) with a 3D network via an in situ graft polymerization. The 3D structure is constructed by a hard cellulose nanocrystal (CNC) as the skeleton and a soft polyacrylonitrile (PAN) as the filler through a dry-processing method. The reported systems have several advantages, including ease of processing, only requiring using an exceedingly small amount of solvent, light weight (ρ = 1.2 g cm-3), excellent mechanical stability (tensile strength of 9.5 MPa), and high ionic conductivity (3.9 × 10-4 S cm-1, 18 °C) and migration number (tLi+ = 0.8). In particular, the high conductivity is enabled: the efficient Li+ transportation path constructed between CNC-PAN powders and abundant sulfonate radicals and hydroxyl groups on the CNC surface acts as the bridge of Li+ transition. When the CNCs are grafted onto the PAN polymer, the dipole-dipole interaction between the nitrile groups of the PAN and the hydroxyl groups of the CNCs can help to improve the mechanical stability and ionic conductivity of the SPE. Moreover, a tightly formed interface between SPE and LiFePO4 (LFP)/carbon black/SPE cathode can be achieved in an assembled solid-state battery by hot pressing, thus further enhancing the battery's performance.

3.
ACS Omega ; 8(17): 15781-15789, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37151511

RESUMO

Conventional ordered mesoporous carbon (OMC) production usually requires long processing times in the carbonization step to achieve desired temperatures through controlled ramps. To enable expedited materials discovery, developing advanced manufacturing capability with significantly improved throughput is highly desired. Current approaches for accelerating the synthesis of OMCs include using microwave and Joule heating. However, both methods rely on the introduction of additional components, such as microwave absorbers and electrically conductive agents, within the bulk materials to impart the ability to reach high carbonization temperatures. This work demonstrates accelerated synthesis and functionalization of OMCs through the use of a dielectric barrier discharge plasma, where carbonization can be accomplished within 15 min using 30 W plasma sources, representing more than an order of magnitude increase in polymer-to-carbon conversion kinetics compared to that of a traditionally pyrolyzed analogue. Particularly, the ability of performing rapid carbonization without the use of additional substrates within the OMC precursor systems is advantageous. A systematic investigation of how plasma power, time, and gas atmosphere impact the resulting OMC pore textures and properties is performed, demonstrating the broad applicability of plasma-enabled carbonization methods. Furthermore, we demonstrate that the plasma treatment strategy can be extended to incorporate heteroatoms into the carbon framework by introducing ammonia gas, resulting in OMCs with a nitrogen content up to 4.7 at %, as well as non-Pluronic templating systems for synthesizing OMC with pore sizes larger than 10 nm. As employing a plasma source for materials pyrolysis is an industrially relevant approach, our system can be extended toward scaled synthesis of OMCs with much faster production rates.

4.
J Am Chem Soc ; 144(26): 11831-11839, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35748573

RESUMO

Minimizing Pt loading without sacrificing catalytic performance is critical, particularly for designing cost-efficient hydrocarbon transformation catalysts. Here, we show that ultralow-loading (0.001-0.05 wt %) Pt- and Zn-functionalized HZSM-5 catalysts, prepared through simple ion exchange and impregnation, are highly active and stable for light alkane dehydroaromatization (DHA). The specific activity of benzene, toluene, and xylene is up to 8.2 mol/gPt/min (or 1592 min-1) over the 0.001 wt % Pt-Zn2/HZSM-5 catalyst during ethane DHA at 550 °C under atmospheric pressure. Additionally, such bimetallic Ptx-Zny/HZSM-5 catalysts are highly stable in contrast to the monometallic Pt/HZSM-5 catalysts. The rate constant of deactivation (kdeactiv), according to the first-order generalized power law equation model, for the bimetallic catalysts is up to 120 times lower than that of the monometallic counterparts, depending on the Pt loading. This breakthrough is achieved through the formation of the [Pt1-Znn]δ+ hybrid cluster, instead of Pt0 cluster-proton adducts, in the micropores of the ZSM-5 zeolite.

5.
ACS Omega ; 5(27): 16865-16874, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32685856

RESUMO

Using in situ generated H2O2 is potentially an effective approach for benzyl alcohol selective oxidation. While the microporous titanium silicate (TS-1) supported with Pd is promising for selective oxidation, the Pd particles are preferentially anchored on the external surface, which leads to the problems such as non-uniform dispersion and low thermal stability. Here, we prepared a Pd@HTS-1 catalyst in which the Pd subnanoparticles were encapsulated in the channels of the hierarchical TS-1 (HTS-1), for benzyl alcohol selective oxidation with in situ produced H2O2. We find that the oxidation rate of benzyl alcohol by in situ H2O2 over the Pd@HTS-1 is up to 4268.8 mmol h-1 kgcat -1, and the selectivity of benzaldehyde approaches 100%. In contrast to the conventional Pd/HTS-1, the present Pd@HTS-1 benefits the benzyl alcohol selective oxidation due to the increased dispersion of Pd particles (forming uniformly dispersed subnano-sized particles), as well as the confinement effect and hierarchical porosity of the HTS-1 host. We further suggested that hydrogen peroxide produced in situ from the molecular hydrogen and oxygen over the Pd sites can be spilled over to the framework Ti4+ sites, forming the Ti-OOH active species, which selectively oxidizes the chemisorbed benzyl alcohol to benzaldehyde on the Pd sites.

6.
ACS Omega ; 5(3): 1669-1678, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32010841

RESUMO

Ethane ammoxidation to acetonitrile and ethylene over the Co/HZSM-5 catalysts was revisited based on both transient and steady-state performance evaluation to elucidate the structure/reactivity relationships. We suggested that the exchanged Co2+ cation encapsulated in the zeolite favors the formation of acetonitrile and ethylene, whereas nanosized cobalt oxide particles without close proximity with the HZSM-5 only favor CO2 formation. Excess Brønsted acid sites of the zeolites may act as a reservoir for NH3, which inhibits the CO2 formation through the NH3-mediated oxidative dehydrogenation mechanism. According to the transient kinetic analysis, the time constants τ from the back-transient decay for NH3 and CO2 are both 7.7 min, which decreased to 2.7 min for acetonitrile and further decreased to 3-4 s for ethane, ethylene, and O2. Assuming first-order reaction kinetics, the rate constants for the formation of acetonitrile and CO2 are 0.37 and 0.13 min-1, respectively, from their corresponding reactive intermediates.

7.
Nat Commun ; 10(1): 3953, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477697

RESUMO

While cobalt-based catalysts have been used in industrial Fischer-Tropsch synthesis for decades, little is known about how the dynamics of the Co-Co2C phase transformation drive their performance. Here we report on the occurrence of hysteresis effects in the Fischer-Tropsch reaction over potassium promoted Co/MnOx catalyst. Both the reaction rate and the selectivity to chain-lengthened paraffins and terminally functionalized products (aldehydes, alcohols, olefins) show bistability when varying the hydrogen/carbon monoxide partial pressures back and forth from overall reducing to carbidizing conditions. While the carbon monoxide conversion and the selectivity to functionalized products follow clockwise hysteresis, the selectivity to paraffins shows counter-clockwise behavior. In situ X-ray diffraction demonstrates the activity/selectivity bistability to be driven by a Co-Co2C phase transformation. The conclusions are supported by High Resolution Transmission Electron Microscopy which identifies the Co-Co2C transformation, Mn5O8 layered topologies at low H2/CO partial pressure ratios, and MnO at high such ratios.

8.
RSC Adv ; 9(24): 13398-13402, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35519606

RESUMO

We report a hierarchical TS-1 encapsulated subnano Pd/PdO hybrid catalyst that shows unprecedented activity in H2O2 direct synthesis from H2 and O2. The macro reaction rate in 30 min is up to 35 010 mmol gPd -1 h-1 at ambient temperature. Such high catalytic activity is achieved due to the hierarchical porous structure of TS-1 and the formation of the encapsulated subnano Pd/PdO hybrid after oxidation/reduction/oxidation treatment.

9.
Nat Commun ; 7: 13058, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708269

RESUMO

The catalytic CO hydrogenation is one of the most versatile large-scale chemical syntheses leading to variable chemical feedstock. While traditionally mainly methanol and long-chain hydrocarbons are produced by CO hydrogenation, here we show that the same reaction can be tuned to produce long-chain n-aldehydes, 1-alcohols and olefins, as well as n-paraffins over potassium-promoted CoMn catalysts. The sum selectivity of aldehydes and alcohols is usually >50 wt% whereof up to ∼97% can be n-aldehydes. While the product slate contains ∼60% n-aldehydes at /pCO=0.5, a 65/35% slate of paraffins/alcohols is obtained at a ratio of 9. A linear Anderson-Schulz-Flory behaviour, independent of the /pCO ratio, is found for the sum of C4+ products. We advocate a synergistic interaction between a Mn5O8 oxide and a bulk Co2C phase, promoted by the presence of potassium, to be responsible for the unique product spectra in our studies.

10.
J Am Chem Soc ; 135(19): 7114-7, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23634891

RESUMO

We show that long-chain 1-alcohols can be produced with high selectivities using heterogeneous CO hydrogenation catalysis. This breakthrough is achieved through the targeted design of "CoCuMn" nanosized core-shell particles using co-precipitation of metal salts into oxalate precursors and subsequent thermal decomposition. Using stoichiometric CO/H2 feeds, the selectivities to 1-alcohols or combined 1-alcohols/1-alkenes are usually higher than 60% and occasionally up to 95%. The Anderson-Schulz-Flory chain-lengthening probabilities for these products are higher than 0.6, but usually below 0.9 so as to optimize the C8-C14 slate as feedstock for plasticizers, lubricants, or detergents.

11.
Chem Commun (Camb) ; 46(32): 5918-20, 2010 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-20614056

RESUMO

In situ hydrogen from aqueous-methanol, instead of H(2) or CO, was used to synthesize imines with a high selectivity from nitroarenes and carbonyl compounds over an Au-Pd/Al(2)O(3) catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...