Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2404665, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923612

RESUMO

Double-atom catalysts (DACs) with asymmetric coordination are crucial for enhancing the benefits of electrochemical carbon dioxide reduction and advancing sustainable development, however, the rational design of DACs is still challenging. Herein, this work synthesizes atomically dispersed catalysts with novel sulfur-bridged Cu-S-Ni sites (named Cu-S-Ni/SNC), utilizing biomass wool keratin as precursor. The plentiful disulfide bonds in wool keratin overcome the limitations of traditional gas-phase S ligand etching process and enable the one-step formation of S-bridged sites. X-ray absorption spectroscopy (XAS) confirms the existence of bimetallic sites with N2Cu-S-NiN2 moiety. In H-cell, Cu-S-Ni/SNC shows high CO Faraday efficiency of 98.1% at -0.65 V versus RHE. Benefiting from the charge tuning effect between the metal site and bridged sulfur atoms, a large current density of 550 mA cm-2 can be achieved at -1.00 V in flow cell. Additionally, in situ XAS, attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), and density functional theory (DFT) calculations show Cu as the main adsorption site is dual-regulated by Ni and S atoms, which enhances CO2 activation and accelerates the formation of *COOH intermediates. This kind of asymmetric bimetallic atom catalysts may open new pathways for precision preparation and performance regulation of atomic materials toward energy applications.

2.
Chem Commun (Camb) ; 60(49): 6320-6323, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38819333

RESUMO

We propose an innovative preparation method, namely, a two-step pyrolysis process, to synthesize Zn-Co bimetallic catalysts with excellent hydrogen evolution performance. In the synthesized Zn1Co1-SNC catalyst, there exists a strong interaction between Zn and Co, along with synergistic effects with S/N atoms, collectively promoting the stability of the catalyst structure. Experimental results demonstrate that the overpotential of this catalyst at 10 mA cm-2 current density is only 49 mV, and it maintains excellent hydrogen evolution performance even after 5000 cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...