Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e16575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107567

RESUMO

Emissions from the non-ferrous metal industry are a major source of carbon emissions in China. Understanding the decoupling of carbon emissions from the non-ferrous metal industry and its influencing factors is crucial for China to achieve its "double carbon" goal. Here, we applied the Tapio decoupling model to measure the decoupling status and developmental trends of carbon output and emissions of the non-ferrous metal industry in China. The panel interaction fixed effects model is used to empirically analyze the influencing factors of carbon emissions in China's non-ferrous metal industry. The results show that carbon emissions from China's non-ferrous metal industry have experienced three main states: strong decoupling, growth connection, and negative growth decoupling. The carbon emissions of the non-ferrous metal industry in some eastern and central provinces from 2000 to 2004 were in a negative decoupling state. Most provinces in the western and central regions were either in a strong or weak decoupling state based on the developmental trend of the decoupling state of carbon emissions. However, from 2015 to 2019, the decoupling status of carbon emissions in most provinces in western and central China had a significantly negative, weakly negative, or a negative growth decoupling status. Energy structure, energy intensity, cost, and non-ferrous metal production all have a positive driving effect on carbon emissions in the non-ferrous metal industry. Production had a mitigating effect on carbon emissions in the non-ferrous metal industry between 2010-2014 in the eastern region of China. From the results of our study, we propose policy recommendations to promote a strong decoupling of carbon emissions from the non-ferrous metal industry by improving energy structure, reducing energy intensity, and optimizing production capacity.


Assuntos
Carbono , Desenvolvimento Econômico , Carbono/análise , Dióxido de Carbono/análise , China , Indústrias
2.
Mater Sci Eng C Mater Biol Appl ; 43: 86-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25175191

RESUMO

A microporous and CaO partially stabilized zirconia (Ca-PSZ) coating covered with hydroxyapatite (HA) nanorods is fabricated on Zr substrate by a hybrid approach of micro-arc oxidation (MAO) and hydrothermal treatment (HT). The effect of P ions in HT solution on the density and morphology of HA was investigated; the hydrophilicity and apatite-forming ability of the Ca-PSZ coating with HA nanorods were also examined. High-density HA nanorods (with a mean diameter of 50 nm and length of 450 nm) grow on the Ca-PSZ coating after HT in a solution containing 0.002 M ß-glycerophosphate disodium (ß-GP). However, only a few of coarse-grained HA crystallites grow in the MAOed pores after HT in distilled water or in an ammonia aqueous solution with an initial pH value equal to the solution containing 0.002 M ß-GP. P ions in the HT solution are thought to significantly promote the formation of HA nanorods. The Ca-PSZ coating covered with HA nanorods displays good hydrophilicity and excellent apatite-inducing ability, and the induced apatite prefers to nucleate on the basal-faceted surfaces of HA nanorods.


Assuntos
Durapatita/farmacologia , Nanotubos , Zircônio/química , Durapatita/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Oxirredução , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...