Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(6): 351, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806809

RESUMO

A target-triggered strand displacement-assisted target recycling based on carbon dots-based fluorescent probe and mesoporous silica nanoparticles@polydopamine (MSNs@PDA) was established to detect miRNA. The surface of MSNs rich in mesopores was coated with a layer of PDA, which can adsorb and quench the fluorescence of single-stranded Fuel DNA with fluorescent carbon dots (CDs) modified at the end through fluorescence resonance energy transfer (FRET). After adding double-stranded DNA-gold nanoparticles (dsDNA-AuNPs) and target let-7a, it will trigger two toehold-mediated strand displacement reactions (TSDR), leading to the recovery of fluorescence and the recycling of target let-7a (excitation wavelength: 380 nm; emission wavelength: 458 nm). The recovery value of fluorescence is proportional to the logarithm of the target microRNA let-7a concentration, thus realizing the sensitivity amplification detection of disease markers. The MSNs@PDA@Fuel DNA-CDs/dsDNA-AuNPs nanoplatform based on the strategy of "on-off-on" and TSDR cyclic amplification may hold great potential as an effective and safe nanoprobe for accurate fluorescence imaging of diseases related to miRNA with low abundances.


Assuntos
Carbono , Corantes Fluorescentes , Ouro , Indóis , MicroRNAs , Polímeros , Pontos Quânticos , Dióxido de Silício , MicroRNAs/análise , Corantes Fluorescentes/química , Carbono/química , Humanos , Pontos Quânticos/química , Polímeros/química , Ouro/química , Dióxido de Silício/química , Indóis/química , Transferência Ressonante de Energia de Fluorescência/métodos , Nanopartículas Metálicas/química , Imagem Óptica/métodos , Limite de Detecção , Porosidade , DNA/química
2.
Heliyon ; 10(5): e26621, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434344

RESUMO

Micropatterned structures on the surface of materials possessing biomimetic properties to mimic the extracellular matrix and induce cellular behaviors have been widely studied. However, it is still a major challenge to obtain internally stable and controllable micropatterned 3D scaffolds for bone repair and regeneration. In this study, 3D scaffolds with regular grating arrays using polycaprolactone (PCL) as a matrix material were prepared by combining 3D printing and soft lithography, and the effects of grating micropatterning on osteogenic differentiation of BMSCs and M1/M2 polarization of macrophages were investigated. The results showed that compared with the planar group and the 30um grating spacing group, PCL with a grating spacing of 20um significantly promoted the osteogenic differentiation of BMSCs, induced the polarization of RAW264.7 cells toward M2 type, and suppressed the expression of M1-type pro-inflammatory genes and markers. In conclusion, we successfully constructed PCL-based three-dimensional scaffolds with stable and controllable micrographs (grating arrays) inside, which possess excellent osteogenic properties and promote the formation of an immune microenvironment conducive to osteogenesis. This study is a step forward to the exploration of bone-filling materials affecting cell behavior, and makes a new contribution to the provision of high-quality materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...