Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Regen Biomater ; 10: rbac103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36683743

RESUMO

Atherosclerosis is a chronic inflammatory vascular disease and a leading cause of death worldwide. Macrophages play an important role in inflammatory responses, cell-cell communications, plaque growth and plaque rupture in atherosclerotic lesions. Here, we review the sources, functions and complex phenotypes of macrophages in the progression of atherosclerosis, and discuss the recent approaches in modulating macrophage phenotype and autophagy for atherosclerosis treatment. We then focus on the drug delivery strategies that target macrophages or use macrophage membrane-coated particles to deliver therapeutics to the lesion sites. These biomaterial-based approaches that target, modulate or engineer macrophages have broad applications for disease therapies and tissue regeneration.

2.
Small ; 18(50): e2203515, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36307906

RESUMO

Cell clusters that collectively migrate from primary tumors appear to be far more potent in forming distant metastases than single cancer cells. A better understanding of the collective cell migration phenomenon and the involvement of various cell types during this process is needed. Here, an in vitro platform based on inverted-pyramidal microwells to follow and quantify the collective migration of hundreds of tumor cell clusters at once is developed. These results indicate that mesenchymal stromal cells (MSCs) or cancer-associated fibroblasts (CAFs) in the heterotypic tumor cell clusters may facilitate metastatic dissemination by transporting low-motile cancer cells in a Rac-dependent manner and that extracellular vesicles secreted by mesenchymal cells only play a minor role in this process. Furthermore, in vivo studies show that cancer cell spheroids containing MSCs or CAFs have faster spreading rates. These findings highlight the active role of co-traveling stromal cells in the collective migration of tumor cell clusters and may help in developing better-targeted therapies.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Humanos , Movimento Celular , Células Estromais , Neoplasias/patologia , Linhagem Celular Tumoral
3.
Front Cell Dev Biol ; 10: 982199, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147737

RESUMO

There is an unmet need for novel and efficacious therapeutics for regenerating injured articular cartilage in progressive osteoarthritis (OA) and/or trauma. Mesenchymal stem cells (MSCs) are particularly promising for their chondrogenic differentiation, local healing environment modulation, and tissue- and organism-specific activity; however, despite early in vivo success, MSCs require further investigation in highly-translatable models prior to disseminated clinical usage. Large animal models, such as canine, porcine, ruminant, and equine models, are particularly valuable for studying allogenic and xenogenic human MSCs in a human-like osteochondral microenvironment, and thus play a critical role in identifying promising approaches for subsequent clinical investigation. In this mini-review, we focus on [1] considerations for MSC-harnessing studies in each large animal model, [2] source tissues and organisms of MSCs for large animal studies, and [3] tissue engineering strategies for optimizing MSC-based cartilage regeneration in large animal models, with a focus on research published within the last 5 years. We also highlight the dearth of standard assessments and protocols regarding several crucial aspects of MSC-harnessing cartilage regeneration in large animal models, and call for further research to maximize the translatability of future MSC findings.

4.
Leukemia ; 36(4): 994-1005, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34845316

RESUMO

Cancer vaccines are promising treatments to prevent relapse after chemotherapy in acute myeloid leukemia (AML) patients, particularly for those who cannot tolerate intensive consolidation therapies. Here, we report the development of an AML cell membrane-coated nanoparticle (AMCNP) vaccine platform, in which immune-stimulatory adjuvant-loaded nanoparticles are coated with leukemic cell membrane material. This AMCNP vaccination strategy stimulates leukemia-specific immune responses by co-delivering membrane-associated antigens along with adjuvants to antigen-presenting cells. To demonstrate that this AMCNP vaccine enhances leukemia-specific antigen presentation and T cell responses, we modified a murine AML cell line to express membrane-bound chicken ovalbumin as a model antigen. AMCNPs were efficiently acquired by antigen-presenting cells in vitro and in vivo and stimulated antigen cross-presentation. Vaccination with AMCNPs significantly enhanced antigen-specific T cell expansion and effector function compared with control vaccines. Prophylactic vaccination with AMCNPs enhanced cellular immunity and protected against AML challenge. Moreover, in an AML post-remission vaccination model, AMCNP vaccination significantly enhanced survival in comparison to vaccination with whole leukemia cell lysates. Collectively, AMCNPs retained AML-specific antigens, elicited enhanced antigen-specific immune responses, and provided therapeutic benefit against AML challenge.


Assuntos
Vacinas Anticâncer , Leucemia Mieloide Aguda , Nanopartículas , Animais , Apresentação de Antígeno , Membrana Celular , Humanos , Imunoterapia , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Vacinação
5.
Adv Mater ; 33(49): e2103505, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34599770

RESUMO

The combination of immunotherapy with other forms of treatment is an emerging strategy for boosting antitumor responses. By combining multiple modes of action, these combinatorial therapies can improve clinical outcomes through unique synergisms. Here, a microrobot-based strategy that integrates tumor tissue disruption with biological stimulation is shown for cancer immunotherapy. The microrobot is fabricated by loading bacterial outer membrane vesicles onto a self-propelling micromotor, which can react with water to generate a propulsion force. When administered intratumorally to a solid tumor, the disruption of the local tumor tissue coupled with the delivery of an immunostimulatory payload leads to complete tumor regression. Additionally, treatment of the primary tumor results in the simultaneous education of the host immune system, enabling it to control the growth of distant tumors. Overall, this work introduces a distinct application of microrobots in cancer immunotherapy and offers an attractive strategy for amplifying cancer treatment efficacy when combined with conventional therapies.


Assuntos
Imunoterapia , Neoplasias , Humanos , Imunidade , Imunoterapia/métodos , Neoplasias/tratamento farmacológico
6.
Nano Lett ; 19(7): 4760-4769, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31184899

RESUMO

Infections caused by multidrug-resistant Gram-negative bacteria have emerged as a major threat to public health worldwide. The high mortality and prevalence, along with the slow pace of new antibiotic discovery, highlight the necessity for new disease management paradigms. Here, we report on the development of a multiantigenic nanotoxoid vaccine based on macrophage membrane-coated nanoparticles for eliciting potent immunity against pathogenic Pseudomonas aeruginosa. The design of this biomimetic nanovaccine leverages the specific role of macrophages in clearing pathogens and their natural affinity for various virulence factors secreted by the bacteria. It is demonstrated that the macrophage nanotoxoid is able to display a wide range of P. aeruginosa antigens, and the safety of the formulation is confirmed both in vitro and in vivo. When used to vaccinate mice via different administration routes, the nanotoxoid is capable of eliciting strong humoral immune responses that translate into enhanced protection against live bacterial infection in a pneumonia model. Overall, the work presented here provides new insights into the design of safe, multiantigenic antivirulence vaccines using biomimetic nanotechnology and the application of these nanovaccines toward the prevention of difficult-to-treat Gram-negative infections.


Assuntos
Vacinas Bacterianas , Farmacorresistência Bacteriana , Infecções por Pseudomonas , Pseudomonas aeruginosa/imunologia , Toxoides , Vacinação , Fatores de Virulência/imunologia , Animais , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/imunologia , Imunidade Humoral/efeitos dos fármacos , Camundongos , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/patologia , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/patogenicidade , Toxoides/imunologia , Toxoides/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...