Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 111(9): 1486-1503.e7, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36893756

RESUMO

Extracting the valence of environmental cues is critical for animals' survival. How valence in sensory signals is encoded and transformed to produce distinct behavioral responses remains not well understood. Here, we report that the mouse pontine central gray (PCG) contributes to encoding both negative and positive valences. PCG glutamatergic neurons were activated selectively by aversive, but not reward, stimuli, whereas its GABAergic neurons were preferentially activated by reward signals. The optogenetic activation of these two populations resulted in avoidance and preference behavior, respectively, and was sufficient to induce conditioned place aversion/preference. Suppression of them reduced sensory-induced aversive and appetitive behaviors, respectively. These two functionally opponent populations, receiving a broad range of inputs from overlapping yet distinct sources, broadcast valence-specific information to a distributed brain network with distinguishable downstream effectors. Thus, PCG serves as a critical hub to process positive and negative valences of incoming sensory signals and drive valence-specific behaviors with distinct circuits.


Assuntos
Encéfalo , Neurônios GABAérgicos , Camundongos , Animais , Substância Cinzenta Periaquedutal , Afeto , Sinais (Psicologia)
2.
Front Cell Neurosci ; 12: 303, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337856

RESUMO

Neurons in the central nucleus of the inferior colliculus (ICC) receive ascending inputs from the ipsilateral and contralateral auditory pathway. However, the contributions of excitatory or inhibitory synaptic inputs evoked by ipsilateral and contralateral stimuli to auditory responses of ICC neurons remain unclear. Using in vivo whole-cell voltage-clamp recordings, we investigated excitatory and inhibitory synaptic currents in neurons of the ICC in response to binaural stimulation by performing an intensity-intensity scan. To systematically analyze the contribution of the ipsilateral and contralateral ear, the sound intensity was randomly delivered to each side from 0 dB sound pressure level (SPL) to 70 dB SPL. Although the synaptic responses were dominated by contralateral inputs at weak sound intensities, they could be increased (or decreased) by additional ipsilateral stimulation at higher intensities. Interestingly, the synaptic responses to contralateral acoustic inputs were not linearly superimposed with the ipsilateral ones. By contrast, the responses showed either a contralateral or ipsilateral profile, depending on which one was more dominant. This change occurred at a certain intensity "switch" point. Thus, the binaural auditory responses of the ICC neurons were not simply mediated by the summation of the inputs evoked by ipsilateral and contralateral stimulations. This suggested that the ICC might inherit the acoustic information integrated at the brainstem, causing the selectivity of monaural excitation and inhibition to underlie the neuronal binaural acoustic response.

3.
Front Cell Neurosci ; 12: 102, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713265

RESUMO

The hippocampus has been thought to process auditory information. However, the properties, pathway, and role of hippocampal auditory responses are unclear. With loose-patch recordings, we found that hippocampal neurons are mainly responsive to noise and are not tonotopically organized. Their latencies are shorter than those of primary auditory cortical (A1) neurons but longer than those of medial septal (MS) neurons, suggesting that hippocampal auditory information comes from MS neurons rather than from A1 neurons. Silencing the MS blocks both hippocampal auditory responses and memory of auditory fear conditioning trained with noise and tone. Auditory fear conditioning was associated with some cues but not with a specific frequency of sound, as demonstrated by animals trained with noise, 2.5-, 5-, 10-, 15-, or 30-kHz tones, and tested with these sounds. Therefore, the noise responses of hippocampal neurons have identified a population of neurons that can be associated with auditory fear conditioning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...