Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 946: 174074, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909794

RESUMO

The exploration of the spatiotemporal distribution of greenhouse gas (GHG) exchange in the cryosphere (including ice sheet, glaciers, and permafrost) is important for understanding its future feedback to the atmosphere. Mountain glaciers and ice sheets may be potential sources of GHG emissions, but the magnitude and distribution of GHG emissions from glaciers and ice sheets remain unclear because observation data are lacking. In this study, in situ CH4 and CO2 and the mixing ratios of their carbon isotope signatures in the air inside an ice cave were measured, and CH4 and CO2 exchange in the meltwater of Laohugou glacier No. 12, a high-mountain glacier in an arid region of western China, was also analyzed and compared with the exchange in downstream rivers and a reservoir. The results indicated elevated CH4 mixing ratios (up to 5.7 ppm) and depleted CO2 (down to 168 ppm) in the ice cave, compared to ambient levels during field observations. The CH4 and CO2 fluxes in surface meltwater of the glacier were extremely low compared with their fluxes in rivers from the Tibetan Plateau (TP). CH4 and CO2 mixing ratios in the air inside the ice cave were mainly controlled by local meteorological conditions (air temperature, wind speed and direction) and meltwater runoff. The carbon isotopic compositions of CH4 and CO2 in the ice cave and terminus meltwater indicated δ13C-CH4 depletion compared to ambient air, suggesting an acetate fermentation pathway. The abundances of key genes for methanogenic archaea/genes encoding methyl coenzyme M reductase further indicated the production of CH4 by methanogenic archaea from the subglacial meltwater of high-mountain glaciers. The discovery of CH4 emissions from even small high-mountain glaciers indicates a more prevalent characteristic of glaciers to produce and release CH4 from the subglacial environment than previously believed. Nevertheless, further research is required to understand the relationship between this phenomenon and glacial dynamics in the third pole.

2.
Nat Commun ; 15(1): 5399, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926364

RESUMO

In recent decades boreal wildfires have occurred frequently over eastern Siberia, leading to increased emissions of carbon dioxide and pollutants. However, it is unclear what factors have contributed to recent increases in these wildfires. Here, using the data we show that background eastern Siberian Arctic warming (BAW) related to summer Russian Arctic sea-ice decline accounts for ~79% of the increase in summer vapor pressure deficit (VPD) that controls wildfires over eastern Siberia over 2004-2021 with the remaining ~21% related to internal atmospheric variability associated with changes in Siberian blocking events. We further demonstrate that Siberian blocking events are occurring at higher latitudes, are more persistent and have larger zonal scales and slower decay due to smaller meridional potential vorticity gradients caused by stronger BAW under lower sea-ice. These changes lead to more persistent, widespread and intense high-latitude warming and VPD, thus contributing to recent increases in eastern Siberian high-latitude wildfires.

3.
Sci Rep ; 14(1): 11630, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773115

RESUMO

The Jishishan Ms 6.2 earthquake occurred at 23:59 on December 18, 2023 in Gansu Province, China. We conducted a field survey to assess the hazards and damages caused by the earthquake and its associated geo-activities. Subsequently, we organized a seminar to discuss the possible causes of the destruction of a prehistoric site-Lajia Settlement-dated back to four thousand years B.P. and located only several kilometers away from the epicenter of the Jishishan earthquake. The Jishishan earthquake was unique for its hazard and disaster process, which featured ground shaking and a series of complex geological and geomorphological activities: sediment and soil spray piles, liquefaction, collapse, landslide, and mudflow along water channels. We define this phenomenon as the Jishishan earthquake ripple hazard (JERH). The most recent evidence from the JERH suggests that a prehistoric earthquake similar to the JERH, instead of riverine floods or earthquake-induced landslide dam outburst flood, as previously hypothesized, destroyed the Lajia Settlement.

4.
J Hazard Mater ; 465: 133152, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056259

RESUMO

Mangrove ecosystems are major carbon sink biomes and also a sink of microplastics (MPs). The final enrichment of MPs in sediments may have a significant impact on the microbial community and carbon turnover in the soil. However, the effects of MP pollution on the mangrove soil microbial communities and carbon release remain unknown. Here, we conducted a manipulative incubation experiment by adding MPs to soil at different soil depths to examine the effect of enriched MPs on soil microorganisms and its function (i.e., decomposition of soil carbon). The results showed that the addition of MPs had no significant effect on the microbial diversity and CO2 cumulative emission in the topsoil but significantly increased CO2 release from the subsoil. The promoting effect of polylactide (PLA) on the release of CO2 from the subsoil was stronger than that of polyethylene (PE) and aging PE. In the subsoil, the activity of soil extracellular enzymes related to N acquisition increased with the MP addition, indicating an increase in microbial N deficiency. The subsoil was more sensitive to MPs because of the exacerbated nitrogen limitation. MP addition reduced the microbial diversity of the subsoil and altered soil microbial interactions. The increasing abundance of some microbial taxa, especially bacteria related to the sulfur cycle, indicated more active electron transfer and organic carbon mineralization in the subsoil. Our findings suggest that MP contamination has potential effects on microbial communities, nutrient cycling, and carbon release in mangrove soils that vary depending on soil depth.


Assuntos
Microbiota , Microplásticos , Plásticos , Solo , Carbono , Dióxido de Carbono , Microbiologia do Solo , Polietileno
5.
Nat Commun ; 14(1): 7189, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938565

RESUMO

In the latter half of the twentieth century, a significant climate phenomenon "diurnal asymmetric warming" emerged, wherein global land surface temperatures increased more rapidly during the night than during the day. However, recent episodes of global brightening and regional droughts and heatwaves have brought notable alterations to this asymmetric warming trend. Here, we re-evaluate sub-diurnal temperature patterns, revealing a substantial increase in the warming rates of daily maximum temperatures (Tmax), while daily minimum temperatures have remained relatively stable. This shift has resulted in a reversal of the diurnal warming trend, expanding the diurnal temperature range over recent decades. The intensified Tmax warming is attributed to a widespread reduction in cloud cover, which has led to increased solar irradiance at the surface. Our findings underscore the urgent need for enhanced scrutiny of recent temperature trends and their implications for the wider earth system.

6.
Nature ; 619(7968): 102-111, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37258676

RESUMO

The stability and resilience of the Earth system and human well-being are inseparably linked1-3, yet their interdependencies are generally under-recognized; consequently, they are often treated independently4,5. Here, we use modelling and literature assessment to quantify safe and just Earth system boundaries (ESBs) for climate, the biosphere, water and nutrient cycles, and aerosols at global and subglobal scales. We propose ESBs for maintaining the resilience and stability of the Earth system (safe ESBs) and minimizing exposure to significant harm to humans from Earth system change (a necessary but not sufficient condition for justice)4. The stricter of the safe or just boundaries sets the integrated safe and just ESB. Our findings show that justice considerations constrain the integrated ESBs more than safety considerations for climate and atmospheric aerosol loading. Seven of eight globally quantified safe and just ESBs and at least two regional safe and just ESBs in over half of global land area are already exceeded. We propose that our assessment provides a quantitative foundation for safeguarding the global commons for all people now and into the future.


Assuntos
Mudança Climática , Planeta Terra , Justiça Ambiental , Internacionalidade , Segurança , Humanos , Aerossóis/metabolismo , Clima , Água/metabolismo , Nutrientes/metabolismo , Segurança/legislação & jurisprudência , Segurança/normas
7.
Sci Total Environ ; 878: 163048, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36990230

RESUMO

Microplastics, as emerging pollutants, have become a global environmental concern. Blue carbon ecosystems (BCEs) are threatened by microplastics. Although substantial studies have explored the dynamics and threats of microplastics in BCEs, the fate and driving factors of microplastics in BCEs on a global scale remain largely unknown. Here, the occurrence, driving factors, and risks of microplastics in global BCEs were investigated by synthesizing a global meta-analysis. The results showed that the abundance of microplastics in BCEs has notable spatial differences worldwide, with the highest microplastic concentrations in Asia, especially in South and Southeast Asia. Microplastic abundance is influenced by the vegetation habitat, climate, coastal environment, and river runoff. The interaction of geographic location, ecosystem type, coastal environment, and climate enhanced the effects of microplastic distribution. In addition, we found that microplastic accumulation in organisms varied according to feeding habits and body weight. Significant accumulation was observed in large fish; however, growth dilution effects were also observed. The effect of microplastics on the organic carbon content of sediments from BCEs varies by ecosystem; microplastic concentrations do not necessarily increase organic carbon sequestration. Global BCEs are at a high risk of microplastic pollution, with high microplastic abundance and toxicity driving the high pollution risk. Finally, this review provides scientific evidence that will form the basis for future microplastic research, focusing on the transport of microplastics in BCEs; effects on the growth, development, and primary productivity of blue carbon plants; and soil biogeochemical cycles.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Microplásticos/análise , Plásticos/análise , Ecossistema , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
8.
Glob Chang Biol ; 29(10): 2732-2745, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36854541

RESUMO

Thermokarst lakes are potentially important sources of methane (CH4 ) and carbon dioxide (CO2 ). However, considerable uncertainty exists regarding carbon emissions from thermokarst lakes owing to a limited understanding of their patterns and motivators. In this study, we measured CH4 and CO2 diffusive fluxes in 163 thermokarst lakes in the Qinghai-Tibet Plateau (QTP) over 3 years from May to October. The median carbon emissions from the QTP thermokarst lakes were 1440 mg CO2 m-2 day-1 and 60 mg CH4 m-2 day-1 , respectively. The diffusive rates of CO2 and CH4 are related to the catchment land cover type. Sediment microbial abundance and hydrochemistry explain 51.9% and 38.3% of the total variance in CH4 diffusive emissions, respectively, while CO2 emissions show no significant relationship with environmental factors. When upscaling carbon emissions from the QTP thermokarst lakes, the annual average CH4 release per lake area is equal to that of the pan-Arctic region. Our findings highlight the importance of incorporating in situ observation data with different emission pathways for different land cover types in predicting carbon emissions from thermokarst lakes in the future.


Assuntos
Dióxido de Carbono , Lagos , Tibet , Dióxido de Carbono/análise , Regiões Árticas , Metano/análise
9.
Nat Commun ; 14(1): 585, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737448

RESUMO

Winter Arctic sea-ice concentration (SIC) decline plays an important role in Arctic amplification which, in turn, influences Arctic ecosystems, midlatitude weather and climate. SIC over the Barents-Kara Seas (BKS) shows large interannual variations, whose origin is still unclear. Here we find that interannual variations in winter BKS SIC have significantly strengthened in recent decades likely due to increased amplitudes of the El Niño-Southern Oscillation (ENSO) in a warming climate. La Niña leads to enhanced Atlantic Hadley cell and a positive phase North Atlantic Oscillation-like anomaly pattern, together with concurring Ural blocking, that transports Atlantic ocean heat and atmospheric moisture toward the BKS and promotes sea-ice melting via intensified surface warming. The reverse is seen during El Niño which leads to weakened Atlantic poleward transport and an increase in the BKS SIC. Thus, interannual variability of the BKS SIC partly originates from ENSO via the Atlantic pathway.

13.
Microorganisms ; 10(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014037

RESUMO

One of the most significant environmental changes across the Tibetan Plateau (TP) is the rapid lake expansion. The expansion of thermokarst lakes affects the global biogeochemical cycles and local climate regulation by rising levels, expanding area, and increasing water volumes. Meanwhile, microbial activity contributes greatly to the biogeochemical cycle of carbon in the thermokarst lakes, including organic matter decomposition, soil formation, and mineralization. However, the impact of lake expansion on distribution patterns of microbial communities and methane cycling, especially those of water and sediment under ice, remain unknown. This hinders our ability to assess the true impact of lake expansion on ecosystem services and our ability to accurately investigate greenhouse gas emissions and consumption in thermokarst lakes. Here, we explored the patterns of microorganisms and methane cycling by investigating sediment and water samples at an oriented direction of expansion occurred from four points under ice of a mature-developed thermokarst lake on TP. In addition, the methane concentration of each water layer was examined. Microbial diversity and network complexity were different in our shallow points (MS, SH) and deep points (CE, SH). There are differences of microbial community composition among four points, resulting in the decreased relative abundances of dominant phyla, such as Firmicutes in sediment, Proteobacteria in water, Thermoplasmatota in sediment and water, and increased relative abundance of Actinobacteriota with MS and SH points. Microbial community composition involved in methane cycling also shifted, such as increases in USCγ, Methylomonas, and Methylobacter, with higher relative abundance consistent with low dissolved methane concentration in MS and SH points. There was a strong correlation between changes in microbiota characteristics and changes in water and sediment environmental factors. Together, these results show that lake expansion has an important impact on microbial diversity and methane cycling.

14.
Sci Total Environ ; 831: 154761, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35339557

RESUMO

Sedimentary soil organic carbon (SOC) stored in thermokarst lakes and ponds (hereafter referred to as thaw lakes) across high-latitude/altitude permafrost areas is of global significance due to increasing thaw lake numbers and their high C vulnerability under climate warming. However, to date, little is known about the SOC storage in these lakes, which limits our better understanding of the fate of these active carbon in a warming future. Here, by combining large-scale field observation data and published deep (e.g., 0-300 cm) permafrost SOC data with a random forest (RF) machine learning technique, we provided the first comprehensive estimation of thaw lake SOC stocks to 3 m depth on the Tibetan Plateau. This study demonstrated that combining multiple environmental factors with the RF model could effectively predict the spatial distributions of the thaw lake SOC density values (SOCDs). The model results revealed that the soil respiration, normalized difference vegetation index (NDVI), and mean annual precipitation (MAP) were the most influential factors for predicting thaw lake SOCDs. In total, the sedimentary SOC stocks in the thaw lakes were approximately 52.62 Tg in the top 3 m, with 53% of the SOC stored in the upper layers (0-100 cm). The SOCDs generally exhibited high values in eastern Tibetan Plateau, and low values in mid- and western Tibetan Plateau, which were similar to the patterns of the land cover types that affected the SOCDs. We further found that the SOCDs of thaw lakes were generally higher than those of their surrounding permafrost soils at different layer depths, which could be ascribed to the erosion of soil particles or leaching solution from the thawing permafrost soils to lakes and/or enhanced vegetation growth at the lake bottom. This research highlights the necessity of explicitly considering the thaw lake SOC stocks in Earth system models for more comprehensive future projections of the carbon dynamics on the plateau.


Assuntos
Pergelissolo , Carbono/análise , Lagos , Lagoas , Solo , Tibet
15.
Sci Total Environ ; 806(Pt 4): 150970, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656587

RESUMO

Environmental changes in response to global warming would conversely deplete the efficacy of our actions combating climate change, cultivating extra cost. Among them, the declining snow cover due to global warming would diminish its contribution to climate regulation, and further exacerbate global warming. This leads to a part of global carbon mitigation efforts acting virtually to neutralize the impact of snow cover reduction. It would have been otherwise saved to contribute to the goals of the Paris Agreement. In this respect, here we evaluate the economic impacts of snow cover reduction in the Northern Hemisphere in terms of the mitigation that virtually counteracts the loss of climate regulation pertinent to the snow cover reduction trend, to demonstrate the magnitude of the cascading costs of climate change. As different carbon mitigation approaches would lead to different economic impacts, we follow the general principles of the Paris Agreement and establish two responsibility-sharing scenarios. The results reveal the non-negligible global costs considering not only the impact incurred by the nations implementing carbon mitigation but also, in the context of globalization, the cascading effect magnified in the global supply chain. We also identify critical nations, sectors, and international trade pairs that would confront the most costs. The results urge hotspot nations and trade partners to actively participate in the enhanced global efforts through the Paris Agreement to reduce carbon emissions. This can not only mitigate its direct global warming effect, but also abate the impacts of collateral environmental deterioration, such as snow cover reduction, eventually for their own benefits.


Assuntos
Comércio , Neve , Mudança Climática , Aquecimento Global , Internacionalidade
16.
Innovation (Camb) ; 2(4): 100180, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34877561

RESUMO

Global development has been heavily reliant on the overexploitation of natural resources since the Industrial Revolution. With the extensive use of fossil fuels, deforestation, and other forms of land-use change, anthropogenic activities have contributed to the ever-increasing concentrations of greenhouse gases (GHGs) in the atmosphere, causing global climate change. In response to the worsening global climate change, achieving carbon neutrality by 2050 is the most pressing task on the planet. To this end, it is of utmost importance and a significant challenge to reform the current production systems to reduce GHG emissions and promote the capture of CO2 from the atmosphere. Herein, we review innovative technologies that offer solutions achieving carbon (C) neutrality and sustainable development, including those for renewable energy production, food system transformation, waste valorization, C sink conservation, and C-negative manufacturing. The wealth of knowledge disseminated in this review could inspire the global community and drive the further development of innovative technologies to mitigate climate change and sustainably support human activities.

17.
Natl Sci Rev ; 8(7): nwaa144, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34691679

RESUMO

Mineral dust can indirectly affect the climate by supplying bioavailable iron (Fe) to the ocean. Here, we present the records of dissolved Fe (DFe) and total Fe (TDFe) in North Greenland Eemian Ice Drilling (NEEM) ice core over the past 110 kyr BP. The Fe records are significantly negatively correlated with the carbon-dioxide (CO2) concentrations during cold periods. The results suggest that the changes in Fe fluxes over the past 110 kyr BP in the NEEM ice core are consistent with those in Chinese loess records because the mineral-dust distribution is controlled by the East Asian deserts. Furthermore, the variations in the dust input on a global scale are most likely driven by changes in solar radiation during the last glacial-interglacial cycle in response to Earth's orbital cycles. In the last glacial-interglacial cycle, the DFe/TDFe ratios were higher during the warm periods (following the post-Industrial Revolution and during the Holocene and last interglacial period) than during the main cold period (i.e. the last glacial maximum (LGM)), indicating that the aeolian input of iron and the iron fertilization effect on the oceans have a non-linear relationship during different periods. Although the burning of biomass aerosols has released large amounts of DFe since the Industrial Revolution, no significant responses are observed in the DFe and TDFe variations during this period, indicating that severe anthropogenic contamination has no significant effect on the DFe (TDFe) release in the NEEM ice core.

18.
Sci Total Environ ; 801: 149692, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34428650

RESUMO

Ebullition has been shown to be an important pathway for methane (CH4) emissions from inland waters. However, the CH4 fluxes and their magnitudes in thermokarst lakes remain unclear due to limited research data, especially on the Tibetan Plateau (TP). The magnitude and regulation of two CH4 pathways, ebullition and diffusion, were investigated in 32 thermokarst lakes on the TP during the summer of 2020. CH4 emissions from thermokarst lakes on the TP showed significant spatiotemporal heterogeneity. Diffusion fluxes in lakes averaged 2.6 mmol m-2 d-1 (ranging from 0.003 to 48.4 mmol m-2 d-1), and ebullition fluxes in lakes averaged 6.6 mmol CH4 m-2 d-1 (ranging from 0.002 to 140.0 mmol m-2 d-1). Together, these ebullition fluxes contributed 66.1 ± 24.9% (ranging 5.4 to 100.0%) to the total (diffusion + ebullition) CH4 emissions, indicating the importance of ebullition as a major CH4 transport mechanism on the TP. In general, thermokarst lakes with higher CH4 diffusion fluxes and ebullition fluxes occurred in alpine meadows (2.5 ± 5.3 mmol m-2 d-1; 8.2 ± 20.6 mmol m-2 d-1), followed by alpine steppes (0.6 ± 5.3 mmol m-2 d-1; 0.7 ± 10.8 mmol m-2 d-1) and desert steppes (0.2 ± 0.2 mmol m-2 d-1; 0.6 ± 0.8 mmol m-2 d-1). The organic matter contents in water and sediment were found to be important factors influencing the seasonal variations in CH4 diffusion fluxes. However, the ebullition CH4 fluxes did not show a clear seasonal variation pattern. Our findings highlight the importance of considering the large spatiotemporal variations in ebullition CH4 fluxes to improve the accuracy of large-scale estimations of CH4 fluxes in thermokarst lakes on the TP. Greater insight into these aspects will increase the understanding of CH4 dynamics in thermokarst lakes on the TP, which is essential for forecasting and climate impact assessments and to better constrain feedback to climate warming.


Assuntos
Lagos , Metano , Metano/análise , Estações do Ano , Tibet
19.
Sci Bull (Beijing) ; 66(23): 2394-2404, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654125

RESUMO

While Arctic sea ice has been decreasing in recent decades that is largely due to anthropogenic forcing, the extent of Antarctic sea ice showed a positive trend during 1979-2015, followed by an abrupt decrease. The shortness of the satellite record limits our ability to quantify the possible contribution of anthropogenic forcing and internal variability to the observed Antarctic sea ice variability. In this study, ice core and fast ice records with annual resolution from six sites are used to reconstruct the annual-resolved northernmost latitude of sea ice edge (NLSIE) for different sectors of the Southern Ocean, including the Weddell Sea (WS), Bellingshausen Sea (BS), Amundsen Sea (AS), Ross Sea (RS), and the Indian and western Pacific Ocean (IndWPac). The linear trends of the NLSIE are analyzed for each sector for the past 100-200 years and found to be -0.08°, -0.17°, +0.07°, +0.02°, and -0.03° per decade (≥95% confidence level) for the WS, BS, AS, RS, and IndWPac, respectively. For the entire Antarctic, our composite NLSIE shows a decreasing trend (-0.03° per decade, 99% confidence level) during the 20th century, with a rapid decline in the mid-1950s. It was not until the early 1980s that the observed increasing trend occurred. A comparison with major climate indices shows that the long-term linear trends in all five sectors are largely dominated by the changes in the Southern Annular Mode (SAM). The multi-decadal variability in WS, BS, and AS is dominated by the Interdecadal Pacific Oscillation, whereas that in the IndWPac and RS is dominated by the SAM.


Assuntos
Clima , Camada de Gelo , Regiões Antárticas , Oceano Índico , Regiões Árticas
20.
Sci Total Environ ; 755(Pt 1): 143025, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33138999

RESUMO

Decline in snow mass threatens the regional economy that critically depends on meltwater. However, the economic scale of snow mass loss is hardly understood, and its role in the vulnerability of future economic development is unclear. We investigate the current reserves of snow cover and the value of its loss. The result showed that the total annual snow mass in western China declines at a rate of 3.3 × 109 Pg per decade (p < 0.05), which accounts for approximately 0.46% of the mean of annual snow mass (7.2 × 1011 Pg). Snow mass loss over the past 40 years in western China turns into an average loss value of CN¥0.1 billion (in the present value) every year ($1 = CN¥7). If the trend continues at the current rate, the accumulated loss value would rise to CN¥63 billion by 2040. Furthermore, subject to the combinations of RCPs and SSPs scenario, the future economic value of snow mass loss in western China appears to accelerate driven by both declining snowmelt resources and socioeconomic development demand. RCP26-SSP1 is the pathway among all to have the least economic cost in replacing the snowmelt loss, and the cost would be quadrupled in RCP80-SSP3 scenario by 2100. At a basin scale, the declining snow mass would turn the regional economy to be more vulnerable except Junggar and Ili endorheic basin. The Ertis river and Qaidam endorheic basins display to be most vulnerable. It highlights that the snow value can be economically important in the regions of west China and should be considered more properly in water resources management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...