Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3554, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688934

RESUMO

Conventional dendritic cells (cDC) play key roles in immune induction, but what drives their heterogeneity and functional specialization is still ill-defined. Here we show that cDC-specific deletion of the transcriptional repressor Bcl6 in mice alters the phenotype and transcriptome of cDC1 and cDC2, while their lineage identity is preserved. Bcl6-deficient cDC1 are diminished in the periphery but maintain their ability to cross-present antigen to CD8+ T cells, confirming general maintenance of this subset. Surprisingly, the absence of Bcl6 in cDC causes a complete loss of Notch2-dependent cDC2 in the spleen and intestinal lamina propria. DC-targeted Bcl6-deficient mice induced fewer T follicular helper cells despite a profound impact on T follicular regulatory cells in response to immunization and mounted diminished Th17 immunity to Citrobacter rodentium in the colon. Our findings establish Bcl6 as an essential transcription factor for subsets of cDC and add to our understanding of the transcriptional landscape underlying cDC heterogeneity.


Assuntos
Citrobacter rodentium , Células Dendríticas , Proteínas Proto-Oncogênicas c-bcl-6 , Células Th17 , Animais , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Camundongos , Citrobacter rodentium/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/metabolismo , Linfócitos T CD8-Positivos/imunologia , Deleção de Genes , Baço/imunologia , Baço/citologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
2.
Mol Ther Methods Clin Dev ; 17: 520-531, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32258215

RESUMO

Hematopoietic stem cell (HSC)-based gene therapy targeting CCR5 represents a promising way to cure human immunodeficiency virus type 1 (HIV-1) infection. Yet the preclinical animal model with transplantation of autologous CCR5-ablated HSCs remains to be optimized. In this study, four Chinese rhesus macaques of simian immunodeficiency virus (SIV) chronic infection were given long-term antiretroviral therapy (ART), during which peripheral CD34+ hematopoietic stem and progenitor cells (HSPCs) were purified and infected with CCR5-specific CRISPR/Cas9 lentivirus (three monkeys) or GFP lentivirus (one monkey). After non-myeloablative conditioning, the CCR5-modified or GFP-labeled HSPCs were autotransplanted to four recipients, and ART was withdrawn following engraftment. All of the recipients survived the process of transplantation. The purified CD34+ HSPCs harbored an undetectable level of integrated SIV DNA. The efficiency of CCR5 disruption in HSPCs ranges from 6.5% to 15.6%. Animals experienced a comparable level of hematopoietic reconstuction and displayed a similar physiological homeostasis Despite the low-level editing of CCR5 in vivo (0.3%-1%), the CCR5-disrupted cells in peripheral CD4+ Effector Memory T cell (TEM) subsets were enriched 2- to 3-fold after cessation of ART. Moreover, two of the three treated monkeys displayed a delayed viral rebound and a moderately recovered immune function 6 months after ART withdrawal. This study highlights the importance of improving the CCR5-editing efficacy and augmenting the virus-specific immunity for effective treatment of HIV-1 infection.

3.
Hum Gene Ther ; 29(1): 51-67, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28599597

RESUMO

Previous research has proven that disruption of either the CCR5 or the CXCR4 gene confers resistance to R5-tropic or X4-tropic human immunodeficiency virus type 1 (HIV-1) infection, respectively. However, the urgent need to ablate both of the co-receptors in individual post-thymic CD4+ T cells for dual protection remains. This study ablated the CCR5 and CXCR4 genes in human CD4+ cell lines and primary CD4+ T cells simultaneously using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, a well-developed, highly efficient genetic engineering tool. The efficiency of gene modification is as high as 55% for CCR5 and 36% for CXCR4 in CD4+ cell lines through infection of a single lentiviral vector (LV-X4R5), which were markedly protected from both HIV-1NL4-3 (X4-using strain) and HIV-1YU-2 (R5-using strain) infection. Importantly, approximately 9% of the modified GHOST (3) CXCR4+CCR5+ cells harbor four bi-allelic gene disruptions in both the CXCR4 and CCR5 loci. Moreover, co-delivery of two single-guide RNAs loaded with Cas9: ribonucleoprotein (sgX4&R5 Cas9RNP) disrupted >12% of CCR5 and 10% of CXCR4 in primary human CD4+ T cells, which were rendered resistant to HIV-1NL4-3 and HIV-1YU-2 in vitro. Further, the modified cells do not show discernible mutagenesis in top-ranked off-target genes by the Surveyor assay and Sanger sequencing analysis. The results demonstrate the safety and efficacy of CRISPR/Cas9 in multiplex gene modification on peripherally circulating CD4+ T cells, which may promote a functional cure for HIV-1 infection.


Assuntos
Linfócitos T CD4-Positivos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/genética , Receptores CCR5/genética , Receptores CXCR4/genética , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Técnicas de Inativação de Genes , Infecções por HIV/terapia , Humanos , Lentivirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...