Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(9)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37766355

RESUMO

French-American hybrids and North American grape species play a significant role in Canada's grape and wine industry. Unfortunately, the occurrence of viruses and viral diseases among these locally important non-vinifera grapes remains understudied. We report here the results from a large-scale survey to assess the prevalence of 14 viruses among 533 composite samples representing 2665 vines from seven French-American hybrid wine grape cultivars, two North American juice grape cultivars (Concord and Niagara), and the table grape cultivar Sovereign coronation. Based on reverse transcription polymerase chain reaction (RT-PCR) assays, ten viruses were detected. Grapevine rupestris stem pitting-associated virus, grapevine leafroll-associated virus 3, grapevine Pinot gris virus and grapevine red blotch virus were detected with the highest frequency. As expected, mixed infections were common; 62% of the samples contained two or more viruses. Overall, hybrid wine grapes were infected with more viruses and a higher prevalence of individual viruses than juice and table grapes. To validate these findings and to refine the virome of these non-European grapes, high-throughput sequencing (HTS) analyses of five composite samples representing each category of grapevine cultivars was performed. Results from HTS agreed with those from RT-PCR. Importantly, Vidal, a widely grown white-wine grape with international recognition due to its use in the award-winning icewine, is host to 14 viruses, four of which comprise multiple and distinct genetic variants. This comprehensive survey represents the most extensive examination of viruses among French-American hybrids and North American grapes to date.


Assuntos
Viroses , Vitis , Vinho , Prevalência , América do Norte/epidemiologia
2.
Pathogens ; 11(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364981

RESUMO

Rapid apple decline disease (RAD) has been affecting orchards in the USA and Canada. Although the primary cause for RAD remains unknown, viruses may contribute to the incidence or severity of the disease. We examined the diversity and prevalence of viruses in orchards affected by RAD in the Okanagan and Similkameen Valleys (British Columbia, Canada). Next-generation sequencing identified 20 previously described plant viruses and one viroid, as well as a new ilarvirus, which we named apple ilarvirus 2 (AIV2). AIV2 was related to subgroup 2 ilarviruses (42-71% nucleotide sequence identity). RT-PCR assays of 148 individual leaf samples revealed frequent mixed infections, with up to eight viruses or viroid detected in a single tree. AIV2 was the most prevalent, detected in 64% of the samples. Other prevalent viruses included three ubiquitous viruses from the family Betaflexiviridae and citrus concave gum-associated virus. Apple rubbery wood virus 1 and 2 and apple luteovirus 1 were also readily detected. The thirteen most prevalent viruses/viroid were detected not only in trees displaying typical RAD symptoms, but also in asymptomatic trees. When compared with reports from orchards affected by RAD in Pennsylvania, New York State, and Washington State, regional differences in relative virus prevalence were noted.

3.
Protein Sci ; 31(4): 882-899, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35048450

RESUMO

Plasmodium falciparum plasmepsin X (PfPMX), involved in the invasion and egress of this deadliest malarial parasite, is essential for its survival and hence considered as an important drug target. We report the first crystal structure of PfPMX zymogen containing a novel fold of its prosegment. A unique twisted loop from the prosegment and arginine 244 from the mature enzyme is involved in zymogen inactivation; such mechanism, not previously reported, might be common for apicomplexan proteases similar to PfPMX. The maturation of PfPMX zymogen occurs through cleavage of its prosegment at multiple sites. Our data provide thorough insights into the mode of binding of a substrate and a potent inhibitor 49c to PfPMX. We present molecular details of inactivation, maturation, and inhibition of PfPMX that should aid in the development of potent inhibitors against pepsin-like aspartic proteases from apicomplexan parasites.


Assuntos
Ácido Aspártico Endopeptidases , Precursores Enzimáticos , Plasmodium falciparum , Proteínas de Protozoários , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Precursores Enzimáticos/química , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química
4.
J Virol ; 96(2): e0144421, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34757836

RESUMO

The NIa protease of potyviruses is a chymotrypsin-like cysteine protease related to the picornavirus 3C protease. It is also a multifunctional protein known to play multiple roles during virus infection. Picornavirus 3C proteases cleave hundreds of host proteins to facilitate virus infection. However, whether or not potyvirus NIa proteases cleave plant proteins has so far not been tested. Regular expression search using the cleavage site consensus sequence [EQN]xVxH[QE]/[SGTA] for the plum pox virus (PPV) protease identified 90 to 94 putative cleavage events in the proteomes of Prunus persica (a crop severely affected by PPV), Arabidopsis thaliana, and Nicotiana benthamiana (two experimental hosts). In vitro processing assays confirmed cleavage of six A. thaliana and five P. persica proteins by the PPV protease. These proteins were also cleaved in vitro by the protease of turnip mosaic virus (TuMV), which has a similar specificity. We confirmed in vivo cleavage of a transiently expressed tagged version of AtEML2, an EMSY-like protein belonging to a family of nuclear histone readers known to be involved in pathogen resistance. Cleavage of AtEML2 was efficient and was observed in plants that coexpressed the PPV or TuMV NIa proteases or in plants that were infected with TuMV. We also showed partial in vivo cleavage of AtDUF707, a membrane protein annotated as lysine ketoglutarate reductase trans-splicing protein. Although cleavage of the corresponding endogenous plant proteins remains to be confirmed, the results show that a plant virus protease can cleave host proteins during virus infection and highlight a new layer of plant-virus interactions. IMPORTANCE Viruses are highly adaptive and use multiple molecular mechanisms to highjack or modify the cellular resources to their advantage. They must also counteract or evade host defense responses. One well-characterized mechanism used by vertebrate viruses is the proteolytic cleavage of host proteins to inhibit the activities of these proteins and/or to produce cleaved protein fragments that are beneficial to the virus infection cycle. Even though almost half of the known plant viruses encode at least one protease, it was not known whether plant viruses employ this strategy. Using an in silico prediction approach and the well-characterized specificity of potyvirus NIa proteases, we were able to identify hundreds of putative cleavage sites in plant proteins, several of which were validated by downstream experiments. It can be anticipated that many other plant virus proteases also cleave host proteins and that the identification of these cleavage events will lead to novel antiviral strategies.


Assuntos
Endopeptidases/metabolismo , Proteínas de Plantas/metabolismo , Potyvirus/enzimologia , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Sequência Consenso , Endopeptidases/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Proteínas de Plantas/química , Potyvirus/classificação , Potyvirus/genética , Proteólise , Prunus persica/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Proteínas Virais/genética
5.
Viruses ; 15(1)2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36680065

RESUMO

Syrah decline, first identified in Southern France in the 1990s, has become a major concern in the global grape and wine industry. This disease mainly affects Syrah (Shiraz) grapevines. Characteristic symptoms include the bright and uniform reddening of leaves throughout the canopy in late summer or early fall; the appearance of abnormalities on the trunk, mainly at the graft union (swelling, pits, grooves, and necrosis); and a reduction in vine vigor, yield and berry quality. Diseased vines may die a few years after disease onset. Damages to the vine are even more pronounced in cool climate regions such as Ontario (Canada), where the affected vines are subjected to very cold and prolonged winters, leading to large numbers of vine deaths. Despite the extensive efforts of the global grape research community over the past few decades, the etiology of this disease remains unclear. In this study, we conducted extensive analyses of viruses in declining Syrah vines identified in commercial vineyards in the Niagara region (Ontario, Canada) through high-throughput sequencing, PCR, RT-PCR and the profiling of genetic variants of select viruses. Multiple viruses and viral strains, as well as three viroids, were identified. However, an unequivocal causal relationship cannot be established between Syrah decline and any of these viruses, although the possibility that certain virus or genetic variants, or both in combination, may contribute to the disease cannot be excluded. Gleaning all information that is available to date, we feel that the traditional approach and an insistence on finding a single cause for such a complex disorder in a woody perennial fruit crop involving grafting will prove to be futile. We hope that this study offers new conceptual perspectives on the etiology of this economically important but enigmatic disease complex that affects the global grape and wine industry.


Assuntos
Vitis , Vinho , Vinho/análise , Ontário , Frutas , Folhas de Planta
6.
FEBS J ; 288(2): 678-698, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32385863

RESUMO

Plasmodium parasites that cause malaria produce plasmepsins (PMs), pepsin-like aspartic proteases that are important antimalarial drug targets due to their role in host hemoglobin degradation. The enzymes are synthesized as inactive zymogens (pro-PMs), and the mechanism of their conversion to the active, mature forms has not been clearly elucidated. Our structural investigations of vacuolar pro-PMs with truncated prosegment (pro-tPMs) reveal that the formation of the S-shaped dimer is their innate property. Further structural studies, biochemical analysis, and molecular dynamics simulations indicate that disruption of the Tyr-Asp loop (121p-4), coordinated with the movement of the loop L1 (237-247) and helix H2 (101p-113p), is responsible for the extension of the pro-mature region (harboring the cleavage site). Consequently, under acidic pH conditions, these structural changes result in the dissociation of the dimers to monomers and the protonation of the residues in the prosegment prompts its unfolding. Subsequently, we demonstrated that the active site of the monomeric pro-tPMs with the unfolded prosegment is accessible for peptide substrate binding; in contrast, the active site is blocked in folded prosegment form of pro-tPMs. Thus, we propose a novel mechanism of auto-activation of vacuolar pro-tPMs that under acidic conditions can form a catalytically competent active site. One monomer cleaves the prosegment of the other one through a trans-activation process, resulting in formation of mature enzyme. As a result, once a mature enzyme is generated, it leads to the complete conversion of all the inactive pro-tPMs to their mature form. DATABASE: Atomic coordinates and structure factors have been submitted in the Protein Data Bank (PDB) under the PDB IDs 6KUB, 6KUC, and 6KUD.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Plasmodium falciparum/enzimologia , Sequência de Aminoácidos , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/genética , Domínio Catalítico , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Alinhamento de Sequência
7.
Plant Dis ; 103(6): 1275-1285, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30932733

RESUMO

The virome of a major white wine grape of cultivar Riesling showing decline and leafroll disease symptoms was analyzed through high-throughput sequencing (HTS) using total RNAs as templates and the Illumina HiSeq 2500 platform. Analysis of HTS data revealed the presence of five viruses and three viroids in the infected vine. These viruses are Grapevine leafroll-associated virus 1 (GLRaV-1) and GLRaV-3 (genus Ampelovirus, family Closteroviridae) and three viruses of the family Betaflexiviridae (namely, Grapevine virus A [GVA], Grapevine virus B, and Grapevine rupestris stem pitting-associated virus [GRSPaV]). We also show that multiple distinct strains of three viruses (GLRaV-3, GVA, and GRSPaV) were present in this diseased grapevine. The complete genomes of two novel and highly divergent isolates of GLRaV-3 were determined using the draft genomes derived from HTS data and two independent rapid amplification of cDNA ends (RACE) strategies to obtain sequences at both the 5' and the 3' termini of the viral genomes. Questionable genome regions of both isolates were also verified through cloning of reverse transcription polymerase chain reaction products and Sanger sequencing. These two isolates are vastly divergent from all other isolates of GLRaV-3 whose genome sequences are available in GenBank. Isolate ON8415A has up to 76% nucleotide sequence identities to other isolates representing existing variant groups. We also revealed high degrees of variation in both length and sequence in the terminal untranslated regions (UTRs) of GLRaV-3 variants. The 5'-UTR of most GLRaV-3 isolates whose complete genomes have been sequenced contain tandem repeats of 65 nucleotides, a highly unusual feature rarely observed in (+)single-stranded RNA viruses. Mechanisms for the biogenesis of these tandem repeats and their function in virus replication and pathogenesis require investigation. Findings of this research add to the genetic diversity, evolutionary biology, and diagnostics of GLRaV-3 that afflicts the global grape wine industry.


Assuntos
Closteroviridae , Metagenoma , Vitis , Closteroviridae/classificação , Closteroviridae/genética , Variação Genética , Genoma Viral/genética , Doenças das Plantas/virologia , Vitis/genética , Vitis/virologia
8.
PLoS One ; 13(12): e0208862, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30540844

RESUMO

Grapevine leafroll-associated virus 3 (GLRaV-3) is the most widely prevalent and economically important of the complex of RNA viruses associated with grapevine leafroll disease (GLD). Phylogenetic studies have grouped GLRaV-3 isolates into nine different monophyletic groups and four supergroups, making GLRaV-3 a genetically highly diverse virus species. In addition, new divergent variants have been discovered recently around the world. Accurate identification of the virus is an essential component in the management and control of GLRaV-3; however, the diversity of GLRaV-3, coupled with the limited sequence information, have complicated the development of a reliable detection assay. In this study, GLRaV-3 sequence data available in GenBank and those generated at Foundation Plant Services, University of California-Davis, was used to develop a new RT-qPCR assay with the capacity to detect all known GLRaV-3 variants. The new assay, referred to as FPST, was challenged against samples that included plants infected with different GLRaV-3 variants and originating from 46 countries. The FPST assay detected all known GLRaV-3 variants, including the highly divergent variants, by amplifying a small highly conserved region in the 3' untranslated terminal region (UTR) of the virus genome. The reliability of the new RT-qPCR assay was confirmed by an enzyme linked immunosorbent assay (ELISA) that can detect all known GLRaV-3 variants characterized to date. Additionally, three new GLRaV-3 divergent variants, represented by four isolates, were identified using a hierarchical testing process involving the FPST assay, GLRaV-3 variant-specific assays and high-throughput sequencing analysis. These variants were distantly related to groups I, II, III, V, VI, VII and IX, but much similar to GLRaV-3 variants with no assigned group; thus, they may represent new clades. Finally, based on the phylogenetic analysis, a new GLRaV-3 subclade is proposed and named as group X.


Assuntos
Regiões 3' não Traduzidas , Closteroviridae , Variação Genética , Genoma Viral , Vitis/virologia , Closteroviridae/classificação , Closteroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vitis/genética
9.
Virol J ; 15(1): 127, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30103767

RESUMO

BACKGROUND: In recent years, the Ontario grape and wine industry has experienced outbreaks of viral diseases across the province. Little is known about the prevalence of viruses and viral diseases in Ontario. Since 2015, we have conducted large-scale surveys for major viruses in commercial wine grapes in order to obtain a comprehensive understanding of the prevalence and severity of viral diseases in Ontario. METHODS: A total of 657 composite leaf samples representing 3285 vines collected from 137 vine blocks of 33 vineyards from three appellations: Niagara Peninsula, Lake Erie North Shore and Prince Edward County. These samples covered six major red cultivars and five major white grape cultivars. Using a multiplex RT-PCR format, we tested these samples for 17 viruses including those involved in all major viral diseases of the grapevine, such as five grapevine leafroll-associated viruses (GLRaV-1, 2, 3, 4, 7), grapevine red blotch virus (GRBV), grapevine Pinot gris virus (GPGV), grapevine rupestris stem sitting-associated virus (GRSPaV), grapevine virus A (GVA), grapevine virus B (GVB), grapevine fleck virus (GFkV), arabis mosaic virus (ArMV), tomato ringspot virus (ToRSV), trapevine fanleaf virus (GFLV), among others. RESULTS: Fourteen of the 17 viruses were detected from these samples and the predominant viruses are GRSPaV, GLRaV-3, GFkV, GPGV and GRBaV with an incidence of 84.0, 47.9, 21.8, 21.6 and 18.3%, respectively. As expected, mixed infections with multiple viruses are common. 95.6% of the samples included in the survey were infected with at least one virus; 67% of the samples with 2-4 viruses and 4.7% of the samples with 5-6 viruses. The major grape cultivars all tested positive for these major viruses. The results also suggested that the use of infected planting material may have been one of the chief factors responsible for the recent outbreaks of viral diseases across the province. CONCLUSIONS: This is the first such comprehensive survey for grapevine viruses in Ontario and one of the most extensive surveys ever conducted in Canada. The recent outbreaks of viral diseases in Ontario vineyards were likely caused by GLRaV-3, GRBV and GPGV. Findings from this survey provides a baseline for the grape and wine industry in developing strategies for managing grapevine viral diseases in Ontario vineyards.


Assuntos
Doenças das Plantas/virologia , Inquéritos e Questionários , Vitis/virologia , Coinfecção , Reação em Cadeia da Polimerase Multiplex , Ontário , Folhas de Planta/virologia , RNA Viral/genética , Vinho/virologia
10.
FEBS J ; 285(16): 3077-3096, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29943906

RESUMO

Malaria is a deadly disease killing worldwide hundreds of thousands people each year and the responsible parasite has acquired resistance to the available drug combinations. The four vacuolar plasmepsins (PMs) in Plasmodium falciparum involved in hemoglobin (Hb) catabolism represent promising targets to combat drug resistance. High antimalarial activities can be achieved by developing a single drug that would simultaneously target all the vacuolar PMs. We have demonstrated for the first time the use of soluble recombinant plasmepsin II (PMII) for structure-guided drug discovery with KNI inhibitors. Compounds used in this study (KNI-10742, 10743, 10395, 10333, and 10343) exhibit nanomolar inhibition against PMII and are also effective in blocking the activities of PMI and PMIV with the low nanomolar Ki values. The high-resolution crystal structures of PMII-KNI inhibitor complexes reveal interesting features modulating their differential potency. Important individual characteristics of the inhibitors and their importance for potency have been established. The alkylamino analog, KNI-10743, shows intrinsic flexibility at the P2 position that potentiates its interactions with Asp132, Leu133, and Ser134. The phenylacetyl tripeptides, KNI-10333 and KNI-10343, accommodate different ρ-substituents at the P3 phenylacetyl ring that determine the orientation of the ring, thus creating novel hydrogen-bonding contacts. KNI-10743 and KNI-10333 possess significant antimalarial activity, block Hb degradation inside the food vacuole, and show no cytotoxicity on human cells; thus, they can be considered as promising candidates for further optimization. Based on our structural data, novel KNI derivatives with improved antimalarial activity could be designed for potential clinical use. DATABASE: Structural data are available in the PDB under the accession numbers 5YIE, 5YIB, 5YID, 5YIC, and 5YIA.


Assuntos
Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Etilenodiaminas/química , Isoquinolinas/química , Peptidomiméticos/farmacologia , Tiazóis/química , Antimaláricos/química , Antimaláricos/farmacologia , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/genética , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos/métodos , Etilenodiaminas/farmacologia , Hemoglobinas/metabolismo , Humanos , Isoquinolinas/farmacologia , Terapia de Alvo Molecular/métodos , Peptidomiméticos/química , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Conformação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Tiazóis/farmacologia
11.
Sci Rep ; 6: 31420, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27531685

RESUMO

Plasmodium falciparum plasmepsin V (PfPMV) is an essential aspartic protease required for parasite survival, thus, considered as a potential drug target. This study reports the first detailed structural analysis and molecular dynamics simulation of PfPMV as an apoenzyme and its complexes with the substrate PEXEL as well as with the inhibitor saquinavir. The presence of pro-peptide in PfPMV may not structurally hinder the formation of a functionally competent catalytic active site. The structure of PfPMV-PEXEL complex shows that the unique positions of Glu179 and Gln222 are responsible for providing the specificity of PEXEL substrate with arginine at P3 position. The structural analysis also reveals that the S4 binding pocket in PfPMV is occupied by Ile94, Ala98, Phe370 and Tyr472, and therefore, does not allow binding of pepstatin, a potent inhibitor of most pepsin-like aspartic proteases. Among the screened inhibitors, the HIV-1 protease inhibitors and KNI compounds have higher binding affinities for PfPMV with saquinavir having the highest value. The presence of a flexible group at P2 and a bulky hydrophobic group at P3 position of the inhibitor is preferred in the PfPMV substrate binding pocket. Results from the present study will aid in the design of potent inhibitors of PMV.


Assuntos
Ácido Aspártico Proteases/química , Modelos Moleculares , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Antimaláricos/química , Ácido Aspártico Proteases/antagonistas & inibidores , Domínio Catalítico , Desenho de Fármacos , Humanos , Inibidores de Proteases/química , Estrutura Quaternária de Proteína , Proteínas de Protozoários/antagonistas & inibidores
12.
Biochim Biophys Acta ; 1864(10): 1356-62, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27378574

RESUMO

Plasmepsin II is a malarial pepsin-like aspartic protease produced as a zymogen containing an N-terminal prosegment domain that is removed during activation. Despite structural similarities between active plasmepsin II and pepsin, their prosegments adopt different conformations in the respective zymogens. In contrast to pepsinogen, the proplasmepsin II prosegment is 80 residues longer, contains a transmembrane region and is non-essential for recombinant expression in an active form, thus calling into question the prosegment's precise function. The present study examines the role of the prosegment in the folding mechanism of plasmepsin II. Both a shorter (residues 77-124) and a longer (residues 65-124) prosegment catalyze plasmepsin II folding at rates more than four orders of magnitude faster compared to folding without prosegment. Native plasmepsin II is kinetically trapped and requires the prosegment both to catalyze folding and to shift the folding equilibrium towards the native conformation. Thus, despite low sequence identity and distinct zymogen conformations, the folding landscapes of plasmepsin II and pepsin, both with and without prosegment, are qualitatively identical. These results imply a conserved and unusual feature of the pepsin-like protease topology that necessitates prosegment-assisted folding.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Catálise , Precursores Enzimáticos/metabolismo , Cinética , Pepsina A/metabolismo , Pepsinogênios/metabolismo , Domínios Proteicos , Dobramento de Proteína
13.
Virol J ; 12: 171, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26482551

RESUMO

BACKGROUND: Isolation of pure RNA from woody perennials, especially fruit crops such as grapevine rich in complex secondary metabolites, has remained very challenging. Lack of effective RNA isolation technology has resulted in difficulties in viral diagnosis and discovery as well as studies on many biological processes of these highly important woody plants. It is imperative to develop and refine methodologies with which large amounts of pure nucleic acids can be readily isolated from woody perennials. METHODS: We compared five commonly used RNA isolation kits in isolating total RNA from twelve species of woody perennials. We made modifications to select RNA isolation systems to simplify and improve their efficiency in RNA isolation. The yield and quality of isolated RNAs were assessed via gel electrophoresis and spectrophotometric measurement. We also performed RT-PCR and RT-qPCR to detect several major viruses from grapevines. RESULTS: Two of the kits were shown to be the best in both the yield and quality of the isolated RNA from all twelve woody species. Using disposable extraction bags for tissue homogenization not only improved the yield without affecting quality, but also made the RNA isolation technology simpler, less costly, and suitable for adoption by many potential users with facility limitations. This system was successfully applied to a wide range of woody plants, including fruit crops, ornamentals and timber trees. Inclusion of polyvinylpyrrolidone in the extraction buffer drastically improved the performance of the system in isolating total RNA from old grapevine leaves collected later in the season. This modification made our system highly effective in isolating quality RNA from grapevine leaves throughout the entire growing season. We further demonstrated that the resulting nucleic acid preparations are suitable for detection of several major grapevine viruses with RNA or DNA genomes using PCR, RT-PCR and qPCR as well as for assays on plant microRNAs. CONCLUSIONS: This improved RNA isolation system would have wide applications in viral diagnostics and discovery, studies on gene expression and regulation, transcriptomics, and small RNA biology in grapevines. We believe this system will also be useful in diverse applications pertaining to research on many other woody perennials and recalcitrant plant species.


Assuntos
Biologia Molecular/métodos , Vírus de Plantas/isolamento & purificação , Plantas/virologia , Vírus de RNA/isolamento & purificação , RNA/isolamento & purificação , Virologia/métodos , Eletroforese , Vírus de Plantas/genética , Vírus de RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrofotometria
14.
J Gen Virol ; 96(Pt 4): 921-932, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25502653

RESUMO

As a member of the newly established Betaflexiviridae family, grapevine rupestris stem pitting-associated virus (GRSPaV) has an RNA genome containing five ORFs. ORF1 encodes a putative replicase polyprotein typical of the alphavirus superfamily of positive-strand ssRNA viruses. Several viruses of this superfamily have been demonstrated to replicate in structures designated viral replication complexes associated with intracellular membranes. However, structure and cellular localization of the replicase complex have not been studied for members of Betaflexiviridae, a family of mostly woody plant viruses. As a first step towards the elucidation of the replication complex of GRSPaV, we investigated the subcellular localization of full-length and truncated versions of its replicase polyprotein via fluorescent tagging, followed by fluorescence microscopy. We found that the replicase polyprotein formed distinctive punctate bodies in both Nicotiana benthamiana leaf cells and tobacco protoplasts. We further mapped a region of 76 amino acids in the methyl-transferase domain responsible for the formation of these punctate structures. The punctate structures are distributed in close proximity to the endoplasmic reticulum network. Membrane flotation and biochemical analyses demonstrate that the N-terminal region responsible for punctate structure formation associated with cellular membrane is likely through an amphipathic α helix serving as an in-plane anchor. The identity of this membrane is yet to be determined. This is, to our knowledge, the first report on the localization and membrane association of the replicase proteins of a member of the family Betaflexiviridae.


Assuntos
Flexiviridae/fisiologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Membrana Celular/virologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Flexiviridae/genética , Flexiviridae/metabolismo , Fases de Leitura Aberta , Doenças das Plantas/virologia , Folhas de Planta/virologia , Estrutura Secundária de Proteína , RNA Polimerase Dependente de RNA/genética , Nicotiana/virologia , Proteínas Virais/genética , Replicação Viral/genética
15.
Mol Biochem Parasitol ; 197(1-2): 56-63, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25447707

RESUMO

Plasmepsin V, a membrane-bound aspartic protease present in Plasmodium falciparum, is involved in the export of malaria parasite effector proteins into host erythrocytes and therefore is a potential target for antimalarial drug development. The present study reports the bacterial recombinant expression and initial characterization of zymogenic and mature plasmepsin V. A 484-residue truncated form of proplasmepsin (Glu37-Asn521) was fused to a fragment of thioredoxin and expressed as inclusion bodies. Refolding conditions were optimized and zymogen was processed into a mature form via cleavage at the Asn80-Ala81 peptide bond. Mature plasmepsin V exhibited a pH optimum of 5.5-7.0 with Km and kcat of 4.6 µM and 0.24s(-1), respectively, at pH 6.0 using the substrate DABCYL-LNKRLLHETQ-E(EDANS). Furthermore, the prosegment of proplasmepsin V was shown to be nonessential for refolding and inhibition. Unexpectedly, unprocessed proplasmepsin V was enzymatically active with slightly reduced substrate affinity (∼ 2-fold), and similar pH optimum as well as turnover compared to the mature form. Both zymogenic and mature plasmepsin V were partially inhibited by pepstatin A as well as several KNI aspartic protease inhibitors while certain metals strongly inhibited activity. Overall, the present study provides the first report on the nonessentiality of the prosegment for plasmepsin V folding and activity, and therefore, subsequent characterization of its structure-function relationships of both zymogen and mature forms in the development of novel inhibitors with potential antimalarial activities is warranted.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Precursores Enzimáticos/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/genética , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Precursores Enzimáticos/antagonistas & inibidores , Precursores Enzimáticos/genética , Plasmodium falciparum/genética , Redobramento de Proteína , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
16.
Plant Methods ; 10(1): 32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25317201

RESUMO

BACKGROUND: Agroinfiltration-based transactivation systems can determine if a protein functions as a transcription factor, and via which promoter element. However, this activation is not always a yes or no proposition. Normalization for variation in plasmid delivery into plant cells, sample collection and protein extraction is desired to allow for a quantitative comparison between transcription factors or promoter elements. RESULTS: We developed new effector and reporter plasmids which carry additional reporter genes, as well as a procedure to assay all three reporter enzymes from a single extract. The applicability of these plasmids was demonstrated with the analysis of CBF transcription factors and their target promoter sequence, DRE/CRT. Changes in the core DRE/CRT sequence abolished activation by Vitis CBF1 or Vitis CBF4, whereas changes in the surrounding sequence lowered activation by Vitis CBF1 but much less so for Vitis CBF4. The system also detected a reduction in activation due to one amino acid change in Vitis CBF1. CONCLUSIONS: The newly developed effector and reporter plasmids improve the ability to quantitatively compare the activation on two different promoter elements by the same transcription factor, or between two different transcription factors on the same promoter element. The quantitative difference in activation by VrCBF1 and VrCBF4 on various DRE/CRT elements support the hypothesis that these transcription factors have unique roles in the cold acclimation process.

17.
Biochemistry ; 50(41): 8862-79, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21928835

RESUMO

Histo-aspartic protease (HAP) from Plasmodium falciparum is a promising target for the development of novel antimalarial drugs. The sequence of HAP is highly similar to those of pepsin-like aspartic proteases, but one of the two catalytic aspartates, Asp32, is replaced with histidine. Crystal structures of the truncated zymogen of HAP and of the complex of the mature enzyme with inhibitor KNI-10395 have been determined at 2.1 and 2.5 Å resolution, respectively. As in other proplasmepsins, the propeptide of the zymogen interacts with the C-terminal domain of the enzyme, forcing the N- and C-terminal domains apart, thereby separating His32 and Asp215 and preventing formation of the mature active site. In the inhibitor complex, the enzyme forms a tight domain-swapped dimer, not previously seen in any aspartic proteases. The inhibitor is found in an unprecedented conformation resembling the letter U, stabilized by two intramolecular hydrogen bonds. Surprisingly, the location and conformation of the inhibitor are similar to those of the fragment of helix 2 comprising residues 34p-38p in the prosegments of the zymogens of gastric aspartic proteases; a corresponding helix assumes a vastly different orientation in proplasmepsins. Each inhibitor molecule is in contact with two molecules of HAP, interacting with the carboxylate group of the catalytic Asp215 of one HAP protomer through a water molecule, while also making a direct hydrogen bond to Glu278A' of the other protomer. A comparison of the shifts in the positions of the catalytic residues in the inhibitor complex presented here with those published previously gives further hints regarding the enzymatic mechanism of HAP.


Assuntos
Ácido Aspártico Proteases/química , Plasmodium falciparum/enzimologia , Animais , Ácido Aspártico/química , Domínio Catalítico , Cristalização , Cristalografia por Raios X/métodos , Escherichia coli/metabolismo , Histidina/química , Humanos , Conformação Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Suínos
18.
Arch Biochem Biophys ; 513(2): 102-9, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21767524

RESUMO

Plasmepsin II (PMII), an aspartic protease from the malarial parasite Plasmodium falciparum, represents a model for understanding protease structure/function relationships due to its unique structure and properties. The present study undertook a thermodynamic and kinetic analysis of the PMII folding mechanism and a pH stability profile. Differential scanning calorimetry revealed that the native state of PMII (Np) was irreversibly unfolded, and in the pH range of 6.5-8.0, PMII refolds to a denatured state (Rp) with higher thermal stability than Np. Rp could also be formed upon partially unfolding PMII at pH 11.0 and 37 °C for 2h, followed by adjustment to a pH in the range of 6.5-8.0. While Rp could be folded/unfolded reversibly, Np was shown to exist as a kinetically trapped state. By examining the unfolding kinetics of Np and the kinetics of Rp folding to Np at 25 °C, it was found that Np is kinetically trapped by an unfolding barrier of 25.5 kcal/mol, and yet once unfolded, is prevented from folding by a comparable folding barrier. The folding mechanism of PMII is similar to that reported for pepsin. It is hypothesized that the PMII zymogen also utilizes a prosegment-catalyzed folding mechanism.


Assuntos
Ácido Aspártico Endopeptidases/química , Proteínas de Protozoários/química , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Pepsina A/química , Plasmodium falciparum/enzimologia , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Termodinâmica
19.
J Struct Biol ; 175(1): 73-84, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21521654

RESUMO

Plasmepsin I (PMI) is one of the four vacuolar pepsin-like proteases responsible for hemoglobin degradation by the malarial parasite Plasmodium falciparum, and the only one with no crystal structure reported to date. Due to substantial functional redundancy of these enzymes, lack of inhibition of even a single plasmepsin can defeat efforts in creating effective antiparasitic agents. We have now solved crystal structures of the recombinant PMI as apoenzyme and in complex with the potent peptidic inhibitor, KNI-10006, at the resolution of 2.4 and 3.1Å, respectively. The apoenzyme crystallized in the orthorhombic space group P2(1)2(1)2(1) with two molecules in the asymmetric unit and the structure has been refined to the final R-factor of 20.7%. The KNI-10006 bound enzyme crystallized in the tetragonal space group P4(3) with four molecules in the asymmetric unit and the structure has been refined to the final R-factor of 21.1%. In the PMI-KNI-10006 complex, the inhibitors were bound identically to all four enzyme molecules, with the opposite directionality of the main chain of KNI-10006 relative to the direction of the enzyme substrates. Such a mode of binding of inhibitors containing an allophenylnorstatine-dimethylthioproline insert in the P1-P1' positions, previously reported in a complex with PMIV, demonstrates the importance of satisfying the requirements for the proper positioning of the functional groups in the mechanism-based inhibitors towards the catalytic machinery of aspartic proteases, as opposed to binding driven solely by the specificity of the individual enzymes. A comparison of the structure of the PMI-KNI-10006 complex with the structures of other vacuolar plasmepsins identified the important differences between them and may help in the design of specific inhibitors targeting the individual enzymes.


Assuntos
Ácido Aspártico Endopeptidases/química , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Proteínas Recombinantes/química , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Ligação de Hidrogênio , Dados de Sequência Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
20.
Mol Biochem Parasitol ; 173(1): 17-24, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20435072

RESUMO

Histo-aspartic protease (HAP) from Plasmodium falciparum is an intriguing aspartic protease due to its unique structure. Our previous study reported the first recombinant expression of soluble HAP, in its truncated form (lys77p-Leu328) (p denotes prosegment), as a thioredoxin (Trx) fusion protein Trx-tHAP. The present study found that the recombinant Trx-tHAP fusion protein aggregated during purification which could be prevented through the addition of 0.2% CHAPS. Trx-tHAP fusion protein was processed into a mature form of tHAP (mtHAP) by both autoactivation, and activation with either enterokinase or plasmepsin II. Using gel filtration chromatography as well as sedimentation velocity and equilibrium ultracentrifugation, it was shown that the recombinant mtHAP exists in a dynamic monomer-dimer equilibrium with an increasing dissociation constant in the presence of CHAPS. Enzymatic activity data indicated that HAP was most active as a monomer. The dominant monomeric form showed a K(m) of 2.0 microM and a turnover number, k(cat), of 0.036s(-1) using the internally quenched fluorescent synthetic peptide substrate EDANS-CO-CH(2)-CH(2)-CO-Ala-Leu-Glu-Arg-Met-Phe-Leu-Ser-Phe-Pro-Dap-(DABCYL)-OH (2837b) at pH 5.2.


Assuntos
Ácido Aspártico Proteases/química , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/isolamento & purificação , Ácido Aspártico Proteases/metabolismo , Dimerização , Cinética , Plasmodium falciparum/química , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...