Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 809, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001962

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) functions as a central regulator in modulating the activities of diverse antioxidant enzymes, maintaining cellular redox balance, and responding to oxidative stress (OS). Kelch-like ECH-associated protein 1 (Keap1) serves as a principal negative modulator in controlling the expression of detoxification and antioxidant genes. It is widely accepted that OS plays a pivotal role in the pathogenesis of various diseases. When OS occurs, leading to inflammatory infiltration of neutrophils, increased secretion of proteases, and the generation of large quantities of reactive oxygen radicals (ROS). These ROS can oxidize or disrupt DNA, lipids, and proteins either directly or indirectly. They also cause gene mutations, lipid peroxidation, and protein denaturation, all of which can result in disease. The Keap1-Nrf2 signaling pathway regulates the balance between oxidants and antioxidants in vivo, maintains the stability of the intracellular environment, and promotes cell growth and repair. However, the antioxidant properties of the Keap1-Nrf2 signaling pathway are reduced in disease. This review overviews the mechanisms of OS generation, the biological properties of Keap1-Nrf2, and the regulatory role of its pathway in health and disease, to explore therapeutic strategies for the Keap1-Nrf2 signaling pathway in different diseases.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Animais , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Oxirredução
2.
FEBS J ; 290(6): 1519-1530, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36164851

RESUMO

Sarcopenia is a common disorder that leads to a progressive decrease in skeletal muscle function in elderly people. Exercise effectively prevents or delays the onset and progression of sarcopenia. However, the molecular mechanisms underlying how exercise intervention improves skeletal muscle atrophy remain unclear. In this study, we found that 21-month-old zebrafish had a decreased swimming ability, reduced muscle fibre cross-sectional area, unbalanced protein synthesis, and degradation, increased oxidative stress, and mitochondrial dysfunction, which suggests zebrafish are a valuable model for sarcopenia. Eight weeks of exercise intervention attenuated these pathological changes in sarcopenia zebrafish. Moreover, the effects of exercise on mitochondrial dysfunction were associated with the activation of the AMPK/SIRT1/PGC-1α axis and 15-PGDH downregulation. Our results reveal potential therapeutic targets and indicators to treat age-related sarcopenia using exercise intervention.


Assuntos
Terapia por Exercício , Mitocôndrias , Doenças Mitocondriais , Músculo Esquelético , Sarcopenia , Peixe-Zebra , Animais , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/prevenção & controle , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sarcopenia/genética , Sarcopenia/prevenção & controle , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...