Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 10(5): 1341-1348, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37215320

RESUMO

Optical trapping of small particles typically requires the use of high NA microscope objectives. Photonic metasurfaces are an attractive alternative to create strongly focused beams for optical trapping applications in an integrated platform. Here, we report on the design, fabrication, and characterization of optical metasurfaces with a numerical aperture up to 1.2 and trapping stiffness greater than 400 pN/µm/W. We demonstrate that these metasurfaces perform as well as microscope objectives with the same numerical aperture. We systematically analyze the impact of the metasurface dimension on the trapping performance and show efficient trapping with metasurfaces with an area as small as 0.001 mm2. Finally, we demonstrate the versatility of the platform by designing metasurfaces able to create multisite optical tweezers for the trapping of extended objects.

2.
Opt Express ; 30(11): 19145-19151, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221699

RESUMO

Here we demonstrate the two-tier manipulation of holographic information using frequency-selective metasurfaces. Our results show that these devices can diffract light efficiently at designed frequency and environmental conditions. By changing the frequency and refractive index of the surrounding environment, the metasurfaces produce two different holographic images. We anticipate that these environmental dependent, frequency-selective metasurfaces will have practical applications in holographic encryption and sensing.

3.
Opt Express ; 26(6): A341-A351, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609304

RESUMO

It is now well established that light trapping is an essential element of thin film solar cell design. Numerous light trapping geometries have already been applied to thin film cells, especially to silicon-based devices. Less attention has been paid to light trapping in GaAs thin film cells, mainly because light trapping is considered less attractive due to the material's direct bandgap and the fact that GaAs suffers from strong surface recombination, which particularly affects etched nanostructures. Here, we study light trapping structures that are implemented in a high-bandgap material on the back of the GaAs active layer, thereby not perturbing the integrity of the GaAs active layer. We study photonic crystal and quasi-random nanostructures both by simulation and by experiment and find that the photonic crystal structures are superior because they exhibit fewer but stronger resonances that are better matched to the narrow wavelength range where GaAs benefits from light trapping. In fact, we show that a 1500 nm thick cell with photonic crystals achieves the same short circuit current as an unpatterned 4000 nm thick cell. These findings are significant because they afford a sizeable reduction in active layer thickness, and therefore a reduction in expensive epitaxial growth time and cost, yet without compromising performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...