Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 14(5): 1962-1970, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35060589

RESUMO

Conductive and stretchable fibers are important components of the increasingly popular wearable electronic devices as they meet the design requirements of excellent electrical conductivity, stretchability, and wearability. In this work, we developed a novel dual conductive-sheath fiber (DCSF) with a conductive sheath composed of a porous elastic conductive layer and cracked metal networks, thus achieving ultrahigh sensitivity under a large strain range. The core of the DCSF is made of thermoplastic polyurethane (TPU) elastic fiber wrapped in a porous stretchable conductive layer composed of carbon nanotubes (CNTs) and TPU. Next, a layer of gold film is deposited on the surface of the porous stretchable conductive layer by ion beam sputtering. Due to the fast response time of 184 ms and ultrahigh sensitivity in the 0-100% strain range (a gauge factor of 184.50 for a strain of 0-10%, 4.12 × 105 for 10%-30%, and 2.80 × 105 for 30%-100%) of the DCSF strain sensor, we successfully wove the fiber strain sensor into gloves and could realize the recognition of different hand gestures. Also the DCSF strain sensor can be applied to detect microvibrations efficiently. The demonstrated DCSF has potential applications in the development of smart wearable devices and micro vibration sensors.

2.
Soft Matter ; 17(44): 10016-10024, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34672302

RESUMO

Conductive fibers have received considerable interest due to their potential applications in the flexible electronics field. Fabricating a conductive fiber that can realize fast deformation with stretchability for multifunctional applications is still highly appealing. Here, we present a deformable conductive fiber (DCF) fabricated by injecting liquid metal (LM) into a hollow thermoplastic polyurethane (TPU) fiber; the DCF can be shaped into a 2D or 3D shape by an electrothermal method at the thermoplastic transition point of TPU. Combined with the solid-liquid phase transition characteristics of the LM at its melting point, the DCF exhibits a variable shape memory feature at two transition points. We have demonstrated that the double-torsional DCF and the helical DCF can act as a capacitive sensor and an inductive sensor, respectively, and they have both been used for human motion monitoring. In addition, the helical DCF can also act as a stretchable electrode with excellent electrical properties (resistance change <2%) under a maximal mechanical strain of 3300%. Overall, the DCF presents great potential for applications in human motion monitoring, soft robotics and smart electronic textiles.

3.
Phytochemistry ; 162: 141-147, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30897351

RESUMO

In the metabolic glycosylation grid of steviol glycosides, UGT76G1 was shown to catalyze at least eight different glucosylation steps, including the formation of rebaudioside B (Reb B) and rebaudioside A (Reb A) (Olsson et al., 2016). In this study, the accumulation of steviolbioside, Reb B, stevioside (ST) and Reb A in more than 140 samples of stevia leaves collected from different regions in China were analyzed by high-performance liquid chromatography (HPLC), and five genotypes, 'N01-N05', with significantly different levels of the abovementioned glycosides were discovered. Mutations in the UGT76G1 gene cloned from cDNAs from these five genotypes were identified, and the functions of the recombinant UGT76G1 variants were ascertained by adding steviolbioside and ST substrates. In addition, homology modeling and molecular docking were used to elucidate the functional differences between variants and UGT76G1. Comparing the sequences of the five variants 'N01-N05' with UGT76G1 (AY345974.1) revealed that base substitutions were not observed in 'N01'. By contrast, 'N02' exhibited 9 single nucleotide polymorphisms (SNPs) and 9 associated amino acid substitutions or insertions with notable variations in the protein structure; however, an enzyme assay showed similar functionalities between the variant and UGT76G1. In 'N03', 49 SNPs and 29 associated amino acid substitutions or insertions were identified and shown to induce significant variations in the protein structure, especially in the binding pocket, resulting in the lack of functionality of this variant in the enzyme assay. These results were in agreement with the docking profiles. Moreover, a nonsense mutation of p.1090T > G in 'N04' and an insertion of a 68 base fragment in 'N05' were found, and both produced a premature protein without any catalytic activity. Therefore, UGT76G1, which is vital to the content of main steviol glycosides, should be a key gene marker for the molecular breeding of Stevia rebaudiana. Our investigations also revealed the location and orientation of active groups of the receptors and donors in the UGT76G1 enzyme, which play key roles in determining whether the enzyme has any enzymatic activity.


Assuntos
Diterpenos do Tipo Caurano/metabolismo , Glucosídeos/metabolismo , Glicosiltransferases/genética , Mutação , Stevia/metabolismo , Difosfato de Uridina/metabolismo , Biocatálise , Clonagem Molecular , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Modelos Moleculares , Conformação Proteica , Stevia/enzimologia , Stevia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...