Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12467, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816531

RESUMO

The advent of Industry 4.0 has significantly promoted the field of intelligent manufacturing, which is facilitated by the development of new technologies are emerging. Robot technology and robot intelligence methods have rapidly developed and been widely applied. Manipulators are widely used in industry, and their control is a crucial research topic. The inverse kinematics solution of manipulators is an important part of manipulator control, which calculates the joint angles required for the end effector to reach a desired position and posture. Traditional inverse kinematics solution algorithms often face the problem of insufficient generalization, and iterative methods have challenges such as large computation and long solution time. This paper proposes a reinforcement learning-based inverse kinematics solution algorithm, called the MAPPO-IK algorithm. The algorithm trains the manipulator agent using the MAPPO algorithm and calculates the difference between the end effector state of the manipulator and the target posture in real-time by designing a reward mechanism, while considering Gaussian distance and cosine distance. Through experimental comparative analysis, the feasibility, computational efficiency, and superiority of this reinforcement learning algorithm are verified. Compared with traditional inverse kinematics solution algorithms, this method has good generalization and supports real-time computation, and the obtained result is a unique solution. Reinforcement learning algorithms have better adaptability to complex environments and can handle different sudden situations in different environments. This algorithm also has the advantages of path planning, intelligent obstacle avoidance, and other advantages in dynamically processing complex environmental scenes.

2.
Micromachines (Basel) ; 15(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38675271

RESUMO

In this paper, we proposed an efficient and high-precision process for fabricating large-area microlens arrays using thermal reflow combined with ICP etching. When the temperature rises above the glass transition temperature, the polymer cylinder will reflow into a smooth hemisphere due to the surface tension effect. The dimensional differences generated after reflow can be corrected using etching selectivity in the following ICP etching process, which transfers the microstructure on the photoresist to the substrate. The volume variation before and after reflow, as well as the effect of etching selectivity using process parameters, such as RF power and gas flow, were explored. Due to the surface tension effect and the simultaneous molding of all microlens units, machining a 3.84 × 3.84 mm2 silicon microlens array required only 3 min of reflow and 15 min of ICP etching with an extremely low average surface roughness Sa of 1.2 nm.

3.
Biosensors (Basel) ; 14(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38667161

RESUMO

Enzyme-based biosensors commonly utilize the drop-casting method for their surface modification. However, the drawbacks of this technique, such as low reproducibility, coffee ring effects, and challenges in mass production, hinder its application. To overcome these limitations, we propose a novel surface functionalization strategy of enzyme crosslinking via inkjet printing for reagentless enzyme-based biosensors. This method includes printing three functional layers onto a screen-printed electrode: the enzyme layer, crosslinking layer, and protective layer. Nanomaterials and substrates are preloaded together during our inkjet printing. Inkjet-printed electrodes feature a uniform enzyme deposition, ensuring high reproducibility and superior electrochemical performance compared to traditional drop-casted ones. The resultant biosensors display high sensitivity, as well as a broad linear response in the physiological range of the serum phosphate. This enzyme crosslinking method has the potential to extend into various enzyme-based biosensors through altering functional layer components.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Enzimas Imobilizadas , Fosfatos , Enzimas Imobilizadas/química , Eletrodos , Impressão , Reprodutibilidade dos Testes
4.
Curr Med Imaging ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38462828

RESUMO

BACKGROUND: The Glypican 3 (GPC3)-positive expression in Hepatocellular Carcinoma (HCC) is associated with a worse prognosis. Moreover, GPC3 has emerged as an immunotherapeutic target in advanced unresectable HCC systemic therapy. It is significant to diagnose GPC3-positive HCCs before therapy. Regarding imaging diagnosis of HCC, dynamic contrast-enhanced CT is more common than MRI in many regions. OBJECTIVE: The aim of this study was to construct and validate a radiomics model based on contrast-enhanced CT to predict the GPC3 expression in hepatocellular carcinoma. METHODS: This retrospective study included 141 (training cohort: n = 100; validation cohort: n = 41) pathologically confirmed HCC patients. Radiomics features were extracted from the Artery Phase (AP) images of contrast-enhanced CT. Logistic regression with the Least Absolute Shrinkage and Selection Operator (LASSO) regularization was used to select features to construct radiomics score (Rad-score). A final combined model, including the Rad-score of the selected features and clinical risk factors, was established. Receiver Operating Characteristic (ROC) curve analysis, Delong test, and Decision Curve Analysis (DCA) were used to assess the predictive performance of the clinical and radiomics models. RESULTS: 5 features were selected to construct the AP radiomics model of contrast-enhanced CT. The radiomics model of AP from contrast-enhanced CT was superior to the clinical model of AFP in training cohorts (P < 0.001), but not superior to the clinical model in validation cohorts (P = 0.151). The combined model (AUC = 0.867 vs. 0.895), including AP Rad-score and serum Alpha-Fetoprotein (AFP) levels, improved the predictive performance more than the AFP model (AUC = 0.651 vs. 0.718) in the training and validation cohorts. The combined model, with a higher decision curve indicating more net benefit, exhibited a better predictive performance than the AP radiomics model. DCA revealed that at a range threshold probability approximately above 60%, the combined model added more net benefit compared to the AP radiomics model of contrastenhanced CT. CONCLUSION: A combined model including AP Rad-score and serum AFP levels based on contrast-enhanced CT could preoperatively predict GPC3-positive expression in HCC.

5.
Vet Sci ; 11(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38393071

RESUMO

Stimbiotic supplementation may provide an innovative feed additive solution to accelerate the proliferation of beneficial fiber-degrading bacteria in the distal intestine and the utilization of dietary fiber. Optimal utilization of dietary fiber has multiple benefits for gut health and nutrient utilization. This study was conducted to evaluate the late gestation and lactation performance, the plasma, colostrum, and milk immunoglobulin (IgA, IgG, and IgM) concentrations, and the anti-inflammatory and antioxidant biomarkers in plasma of sows fed with or without a stimbiotic during the late gestation and lactation phase. A total of 40 sows were allocated to two treatment groups: control (CT) with no supplementation or 100 mg/kg stimbiotic (VP), with 20 sows per treatment. Sows were fed the treatment diets from d 85 of gestation to d 28 of lactation. In the results, the average daily weight gain of piglets during lactation was greater from sows fed in the VP group compared to that in the CT group (p < 0.05). The plasma concentrations of IgM at farrowing and IgG at weaning of the sows fed the diet with the stimbiotic supplementation were much higher than those in the CT sows (p < 0.05), respectively. In addition, the dietary stimbiotic increased the concentrations of IgM in the colostrum and of IgA and IgM in the milk at d 14 of lactation (p < 0.05). Plasma concentrations of malondialdehyde (MDA) on d 0 and d 28 of lactation tended to be lower in sows fed the VP diets compared with those of the sows fed the CT diets. Thus, our study indicated that stimbiotic supplementation could improve the daily weight gain of piglets and the immune function of sows in lactation.

6.
Opt Express ; 32(1): 482-498, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175077

RESUMO

Polycrystalline zinc selenide is widely used in advanced optical systems due to its superior optical properties. However, the soft and brittle properties bring a challenge for high-quality surface processing. In recent years, elliptical vibration cutting has been proven as a promising method for machining brittle materials. In the present research, a series of grooving and planning experiments were carried out to investigate the machinability of zinc selenide with elliptical vibration cutting. The removal mechanism was analyzed from fracture characteristics, chip morphology, and phase transformation. The results show that elliptical vibration cutting is effective in suppressing cleavage-induced craters. Reducing the nominal cutting speed is beneficial to inhibit the spring back-induced tearing of grains. A 94-time increase in the critical depth of cut was achieved by vibration trajectory optimization compared to ordinary cutting. Moreover, the influence mechanism of feed on the evolution of surface morphology was revealed. Finally, a zinc selenide microlens array was successfully fabricated. The performance was evaluated by geometric parameter measurements and a multiple imaging test. The findings provide a prospective method for ductile regime machining of zinc selenide.

8.
Opt Express ; 31(20): 31993-32009, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859012

RESUMO

Infrared micro-lens arrays (MLAs) are widely used in advanced optical systems due to their advantages such as low focusing depth and high sensitivity. Elliptical vibration cutting (EVC) is a promising approach for the fabrication of MLAs on infrared brittle materials. However, the mechanism of ductile machining of MLAs prepared by EVC has not been fully elucidated so far. In this paper, based on the vibration intermittent cutting characteristics and the transient material removal state, a ductile machining model of MLAs on brittle material by EVC was established. This model effectively calculates the subsurface damage of the machined surface and realizes the prediction of the critical depth for ductile machining of MLAs. Furthermore, the concave micro-lenses were prepared on single crystal silicon by EVC and ordinary cutting (OC) to verify this model. The results demonstrated that EVC could significantly enhance the critical depth by approximately 4.3 times compared to OC. Microstructural surface damage predominantly occurs at the exit side of the tool cutting. This proposed model accurately predicts the actual critical depth, with an average error of about 7.5%. Additionally, elevating the amplitude in the depth of cut direction could increase the critical depth, but a larger amplitude would inhibit the increase of the critical depth. This study contributes to a better understanding of ductile machining of microstructure on brittle materials and facilitates the process optimization of MLAs fabrication using EVC.

9.
Micromachines (Basel) ; 14(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37421079

RESUMO

Micro-optical gyroscopes (MOGs) place a range of components of the fiber-optic gyroscope (FOG) onto a silicon substrate, enabling miniaturization, low cost, and batch processing. MOGs require high-precision waveguide trenches fabricated on silicon instead of the ultra-long interference ring of conventional F OGs. In our study, the Bosch process, pseudo-Bosch process, and cryogenic etching process were investigated to fabricate silicon deep trenches with vertical and smooth sidewalls. Different process parameters and mask layer materials were explored for their effect on etching. The effect of charges in the Al mask layer was found to cause undercut below the mask, which can be suppressed by selecting proper mask materials such as SiO2. Finally, ultra-long spiral trenches with a depth of 18.1 µm, a verticality of 89.23°, and an average roughness of trench sidewalls less than 3 nm were obtained using a cryogenic process at -100 °C.

10.
Appl Opt ; 62(13): 3445-3453, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132846

RESUMO

Microlens arrays (MLAs) are widely used in homogenized laser beams due to excellent optical properties. However, the interference effect generated in traditional MLA (tMLA) homogenization will reduce the quality of the homogenized spot. Hence, the random MLA (rMLA) was proposed to reduce the interference effect in the homogenization process. To achieve mass production of these high-quality optical homogenization components, the rMLA with randomness in both period and sag height was proposed first. Subsequently, MLA molds were ultra-precision machined on S316 molding steel by elliptical vibration diamond cutting. Furthermore, the rMLA components were precisely fabricated by applying molding technology. Finally, Zemax simulation and homogenization experiments were carried out to verify the advantage of the designed rMLA.

11.
Vet Sci ; 11(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38250917

RESUMO

The aim of this experiment was to investigate the effect of Laminaria japonica polysaccharide (LJP) supplementation at levels of 100, 200, or 400 mg/kg on the growth performance, faecal digestive enzyme activity, and serum biochemistry and amino acids of weaned piglets. One hundred and twenty weaned piglets (Barkshire × Licha Black, 21 days old, 6.13 ± 0.16 kg) were randomly divided into four groups with five replicates of six piglets in each group based on body weight. Piglets were fed with different levels (0, 100, 200, and 400 mg/kg) of LJP for a 21-day trial. On day 21, faecal and blood samples were collected from one piglet per pen. The results showed that the supplementation of the 200 and 400 mg/kg LJP significantly increased average daily gain (ADG) and average daily feed intake (ADFI) compared to the control group (p = 0.007; p = 0.002), and dietary LJP linearly increased ADG and ADFI (p = 0.002; p < 0.001). In addition, the supplementation of the 200 and 400 mg/kg LJP significantly increased faecal amylase activity (p < 0.001) compared to the control group, and dietary LJP linearly increased faecal amylase and lipase activities (p = 0.001; p = 0.037). Moreover, dietary LJP at 400 mg/kg increased serum histidine content compared to the other groups (p = 0.002), and dietary LJP linearly increased the contents of serum histidine and asparagine in piglets (p < 0.001; p = 0.046). In conclusion, supplementation of 200 and 400 mg/kg LJP could enhance growth performance and faecal digestive enzyme activity and modulate the serum amino acid content of weaned piglets, potentially contributing to the health of weaned piglets.

12.
Adv Sci (Weinh) ; 9(34): e2204519, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36253149

RESUMO

Aerogels have been attracting wide attentions in flexible/wearable electronics because of their light weight, excellent flexibility, and electrical conductivity. However, multifunctional aerogel-based flexible/wearable electronics for human physiological/motion monitoring, and energy harvest/supply for mobile electronics, have been seldom reported yet. In this study, a kind of hybrid aerogel (GO/CNT HA) based on graphene oxide (GO) and carboxylated multiwalled carbon nanotubes (CMWCNTs) is prepared which can not only used as piezoresistive sensors for human motion and physiological signal detections, but also as high performance triboelectric nanogenerator (TENG) coupled with both solid-solid and gas-solid contact electrifications (CE). The repeatedly loading-unloading tests with 20 000 cycles exhibit its high and ultrastable piezoresistive sensor performances. Moreover, when the obtained aerogel is used as the electrode of a TENG, high electric output performance is produced due to the synergistic effect of solid-solid, and gas-solid interface CEs (3D electrification: solid-solid interface CE between the two solid electrification layers; gas-solid interface CE between the inner surface of GO/CNT HA and the air filled in the aerogel pores). This kind of aerogel promises good applications for human physiological/motion monitoring and energy harvest/supply in flexible/wearable electronics such as piezoresistive sensors and flexible TENG.


Assuntos
Nanotubos de Carbono , Humanos , Eletrônica , Ácidos Carboxílicos , Condutividade Elétrica
13.
Opt Lett ; 47(19): 5052-5055, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181184

RESUMO

Flexible inorganic GaN-based microscale light-emitting diodes (µLEDs) show potential applications in wearable electronics, biomedical engineering, and human-machine interfaces. However, developing cost-effective products remains a challenge for flexible GaN-based µLEDs. Here, a facile and stable method is proposed to fabricate flexible GaN-based µLEDs from silicon substrates in an array-scale manner by wet etching. Circular and square µLED arrays with a size and pitch of 500 µm were fabricated and then transferred to a flexible acrylic/copper substrate. The as-fabricated flexible µLEDs can maintain their structure intact while exhibiting a significant increase in external quantum efficiency. This Letter promotes the application of simple and low-cost flexible µLED devices, especially for virtual displays, wearables, and curvilinear displays.

14.
Small ; 18(47): e2203956, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228096

RESUMO

Flexibility/wearable electronics such as strain/pressure sensors in human-machine interactions (HMI) are highly developed nowadays. However, challenges remain because of the lack of flexibility, fatigue resistance, and versatility, leading to mechanical damage to device materials during practical applications. In this work, a triple-network conductive hydrogel is fabricated by combining 2D Ti3 C2 Tx nanosheets with two kinds of 1D polymer chains, polyacrylamide, and polyvinyl alcohol. The Ti3 C2 Tx nanosheets act as the crosslinkers, which combine the two polymer chains of PAM and PVA via hydrogen bonds. Such a unique structure endows the hydrogel (MPP-hydrogel) with merits such as mechanical ultra-robust, super-elasticity, and excellent fatigue resistance. More importantly, the introduced Ti3 C2 Tx nanosheets not only enhance the hydrogel's conductivity but help form double electric layers (DELs) between the MXene nanosheets and the free water molecules inside the MPP-hydrogel. When the MPP-hydrogel is used as the electrode of the triboelectric nanogenerator (MPP-TENG), due to the dynamic balance of the DELs under the initial potential difference generated from the contact electrification as the driving force, an enhanced electrical output of the TENG is generated. Moreover, flexible strain/pressure sensors for tiny and low-frequency human motion detection are achieved. This work demonstrates a promising flexible electronic material for e-skin and HMI.


Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Humanos , Hidrogéis/química , Condutividade Elétrica , Polímeros , Eletrônica
15.
Micromachines (Basel) ; 13(6)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35744513

RESUMO

In this paper, a high-precision, low-cost, batch processing nanoimprint method is proposed to process a spherical microlens array (MLA). The nanoimprint mold with high surface precision and low surface roughness was fabricated by single-point diamond turning. The anti-sticking treatment of the mold was carried out by perfluorooctyl phosphoric acid (PFOPA) liquid deposition. Through the orthogonal experiment of hot embossing with the treated mold and subsequent inductively coupled plasma (ICP) etching, the microstructure of MLA was transferred to the silicon substrate, with a root mean square error of 17.7 nm and a roughness of 12.1 nm Sa. The average fitted radius of the microlens array units is 406.145 µm, which is 1.54% different from the design radius.

16.
Micromachines (Basel) ; 12(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34832818

RESUMO

Designed micro-nano structures on the surface of aluminum alloy provide excellent light trapping properties that can be used extensively in thermal photovoltaics, sensors, etc. However, the fabrication of high-performance antireflective micro-nano structures on aluminum alloy is challenging because aluminum has shallow intrinsic losses and weak absorption. A two-step strategy is proposed for fabricating broadband antireflection structures by superimposing nanostructures onto microscale structures. By optimizing the processing parameters of femtosecond laser, the average reflectances of 2.6% within the visible spectral region (400-800 nm) and 5.14% within the Vis-NIR spectral region (400-2500 nm) are obtained.

17.
Research (Wash D C) ; 2021: 9757943, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671744

RESUMO

Efficient acoustic communication across the water-air interface remains a great challenge owing to the extreme acoustic impedance mismatch. Few present acoustic metamaterials can be constructed on the free air-water interface for enhancing the acoustic transmission because of the interface instability. Previous strategies overcoming this difficulty were limited in practical usage, as well as the wide-angle and multifrequency acoustic transmission. Here, we report a simple and practical way to obtain the wide-angle and multifrequency water-air acoustic transmission with a tunable fluid-type acoustic metasurface (FAM). The FAM has a transmission enhancement of acoustic energy over 200 times, with a thickness less than the wavelength in water by three orders of magnitude. The FAM can work at an almost arbitrary water-to-air incident angle, and the operating frequencies can be flexibly adjusted. Multifrequency transmissions can be obtained with multilayer FAMs. In experiments, the FAM is demonstrated to be stable enough for practical applications and has the transmission enhancement of over 20 dB for wide frequencies. The transmission enhancement of music signal across the water-air interface was performed to demonstrate the applications in acoustic communications. The FAM will benefit various applications in hydroacoustics and oceanography.

18.
Sci Adv ; 7(34)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34407930

RESUMO

Fluid interfaces are omnipresent in nature. Engineering the fluid interface is essential to study interfacial processes for basic research and industrial applications. However, it remains challenging to precisely control the fluid interface because of its fluidity and instability. Here, we proposed a magnetic-actuated "capillary container" to realize three-dimensional (3D) fluid interface creation and programmable dynamic manipulation. By wettability modification, 3D fluid interfaces with predesigned sizes and geometries can be constructed in air, water, and oils. Multiple motion modes were realized by adjusting the container's structure and magnetic field. Besides, we demonstrated its feasibility in various fluids by performing selective fluid collection and chemical reaction manipulations. The container can also be encapsulated with an interfacial gelation reaction. Using this process, diverse free-standing 3D membranes were produced, and the dynamic release of riboflavin (vitamin B2) was studied. This versatile capillary container will provide a promising platform for open microfluidics, interfacial chemistry, and biomedical engineering.

20.
Microbiol Spectr ; 9(1): e0016921, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34132580

RESUMO

Nonstructural protein 1 (Nsp1) of severe acute respiratory syndrome coronaviruses (SARS-CoVs) is an important pathogenic factor that inhibits host protein translation by means of its C terminus. However, its N-terminal function remains elusive. Here, we determined the crystal structure of the N terminus (amino acids [aa] 11 to 125) of SARS-CoV-2 Nsp1 at a 1.25-Å resolution. Further functional assays showed that the N terminus of SARS-CoVs Nsp1 alone loses the ability to colocalize with ribosomes and inhibit protein translation. The C terminus of Nsp1 can colocalize with ribosomes, but its protein translation inhibition ability is significantly weakened. Interestingly, fusing the C terminus of Nsp1 with enhanced green fluorescent protein (EGFP) or other proteins in place of its N terminus restored the protein translation inhibitory ability to a level equivalent to that of full-length Nsp1. Thus, our results suggest that the N terminus of Nsp1 is able to stabilize the binding of the Nsp1 C terminus to ribosomes and act as a nonspecific barrier to block the mRNA channel, thus abrogating host mRNA translation.


Assuntos
SARS-CoV-2/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , COVID-19 , Cristalografia por Raios X , Células HEK293 , Humanos , Biossíntese de Proteínas , Conformação Proteica , Domínios Proteicos , RNA Mensageiro , Análise de Sequência de Proteína , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...