Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 15(20): 11412-11447, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37874682

RESUMO

Ferroptosis regulators have been found to affect tumor progression. However, studies focusing on ferroptosis and soft tissue sarcoma (STS) are rare. Somatic mutation, copy number variation, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, consensus clustering, differentially expressed genes analysis (DEGs), principal component analysis (PCA) and gene set enrichment analysis (GSEA) were used to identify and explore different ferroptosis modifications in STS. A nomogram was constructed to predict the prognosis of STS. Moreover, three immunotherapy datasets were used to assess the Fescore. Western blotting, siRNA transfection, EdU assay and reactive oxygen species (ROS) measurement were performed. 16 prognostic ferroptosis regulators were screened and significant differences were observed in somatic mutation, copy number variation (CNV) and RT-qPCR among these ferroptosis regulators. 2 different ferroptosis modification patterns were found (Fe cluster A and B). Fe cluster A with higher Fescore was correlated with p53 pathway and had better prognosis of STS (p = 0.002) while Fe cluster B with lower Fescore was correlated with angiogenesis and MYC pathway and showed a poorer outcome. Besides, the nomogram effectively predicted the outcome of STS and the Fescore could also well predict the prognosis of other 16 tumors and immunotherapy response. Downregulation of LOX also inhibited growth and increased ROS production in sarcoma cells. The molecular characterization of ferroptosis regulators in STS was explored and an Fescore was constructed. The Fescore quantified ferroptosis modification in STS patients and effectively predicted the prognosis of a variety of tumors, providing novel insights for precision medicine.


Assuntos
Ferroptose , Sarcoma , Humanos , Prognóstico , Variações do Número de Cópias de DNA , Ferroptose/genética , Espécies Reativas de Oxigênio , Sarcoma/genética , Sarcoma/terapia , Biologia Computacional , Imunoterapia
2.
Clin Exp Med ; 23(8): 5389-5398, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37861934

RESUMO

Heat shock protein B6 (HSPB6) plays a certain role in the formation of several cancers, whereas its effect on osteosarcoma remains unclear. In this study, the effect of HSPB6 on osteosarcoma was validated through numerous experiments. HSPB6 was down-regulated in osteosarcoma. As indicated by the result of CCK-8 and colony formation assays, HSPB6 overexpression was likely to inhibit the osteosarcoma cells proliferation, whereas the flow cytometry analysis suggested that apoptosis of osteosarcoma cells was increased after HSPB6 overexpression. Furthermore, transwell and wound healing assays suggested that when HSPB6 was overexpressed, osteosarcoma cells migration and invasion were declined. Moreover, the western blotting assay suggested that the protein level of p-ERK1/2 was down-regulated in osteosarcoma when HSPB6 was overexpressed. Besides, the effect of HSPB6 on osteosarcoma in vivo was examined. As indicated by the result, HSPB6 overexpression was likely to prevent osteosarcoma growth and lung metastasis in vivo. As revealed by the findings of this study, HSPB6 overexpression exerted anticancer effects in osteosarcoma through the ERK signaling pathway and HSPB6 may be suitable target for osteosarcoma molecular therapies.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Apoptose , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas de Choque Térmico HSP20/genética , Proteínas de Choque Térmico HSP20/metabolismo , Sistema de Sinalização das MAP Quinases , Osteossarcoma/patologia , Transdução de Sinais
3.
Exp Ther Med ; 26(3): 457, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37614424

RESUMO

As an important 5-methylcytidine (m5C) methyltransferase, NOP2/Sun RNA methyltransferase family member 6 (NSUN6) has been reported to play an important role in the progression of several diseases. However, the role of NSUN6 in the progression of osteosarcoma (OS) remains unclear. This study aimed to identify the role of NSUN6 in the progression of OS and clarify the potential molecular mechanism. The present study discovered that NSUN6 was upregulated in OS and a higher NSUN6 expression was a strong indicator for poorer prognosis of patients with OS. In addition, the loss of NSUN6 led to reduced proliferation, migration and invasion of OS cells. Through bioinformatics analysis, RNA immunoprecipitation (RIP) and methylated RIP assays, eukaryotic elongation factor 1 α-2 (EEF1A2) was identified and validated as a potential target of NSUN6 in OS. Mechanistically, the expression of EEF1A2 was significantly suppressed following NSUN6 knockdown due to reduced EEF1A2 mRNA stability in an m5C-dependent manner. Meanwhile, NSUN6 deficiency inhibited m5C-dependent activation of Akt/mTOR signaling pathway. In addition, genetic overexpression of EEF1A2 or pharmacological activation of the Akt signaling pathway counteracted the suppressive effects of NSUN6 deficiency on the proliferation, invasion and migration of OS cells. The current findings suggested that NSUN6 may serve as a potential therapeutic target for OS treatment.

4.
Front Bioeng Biotechnol ; 10: 898951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747493

RESUMO

Calcium sulfate (CS) bone cement has been shown to have good biocompatibility and can be used as a bone filler for repairing bone defects. However, its clinical application is limited due to its low compressive strength and weak bone repair activity. To this end, in this study, cubic crystalline magnesium-doped calcium sulfate (MgCS) was prepared and mixed with 45S5 bioglass (BG) to form a composite bone cement (MgCS/BG). The results show that cubic crystal calcium sulfate helps to increase the compressive strength of the composite bone cement to more than 60 MPa. More importantly, the obtained magnesium-doped composite bone cement can promote the adhesion and differentiation of mesenchymal stem cells and has good bioactivity. Through a skull defect model, it was found that MgCS/BG can significantly enhance bone defect repair and new bone formation. This new composite MgCS/BG is very promising for future translation into clinical applications.

5.
Front Bioeng Biotechnol ; 10: 846812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35519620

RESUMO

Background: N6-methyladenosine (m6A) methylation played a key role in tumor growth. However, the relationship between m6A and soft tissue sarcoma (STS) was still unclear. Methods: The characterization and patterns of m6A modification in STS (TCGA-SARC and GSE17674) were analyzed comprehensively through bioinformatics and real-time polymerase chain reaction (RT-PCR). The effects of different m6A modification patterns on prognosis and immune infiltration of STS were further explored. Differentially expressed gene (DEG) analysis was performed. Moreover, an m6Ascore was constructed by principal component analysis (PCA). In addition, two immunotherapy datasets (IMvigor210 and GSE78220) and a sarcoma dataset (GSE17618) were used to evaluate the m6Ascore. Results: Huge differences were found in somatic mutation, CNV, and expression of 25 m6A regulators in STS. Two modification patterns (A and B) in STS were further identified and the m6A cluster A showed a better clinical outcome with a lower immune/stromal score compared with the m6A cluster B (p < 0.050).In addition to , most STS samples from m6A cluster A showed a high m6Ascore, which was related to mismatch repair and a better prognosis of STS (p < 0.001). In contrast, the m6A cluster B, characterized by a low m6Ascore, was related to the MYC signaling pathway, which led to a poor prognosis of STS. A high m6Ascore also contributed to a better outcome of PD-1/PD-L1 blockade immunotherapy. Conclusion: The modification patterns of 25 m6A regulators in the STS microenvironment were explored comprehensively. The novel m6Ascore effectively predicted the characteristics of the tumor microenvironment (TME) and outcome in STS and provided novel insights for future immunotherapy.

6.
J Oncol ; 2021: 9967954, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34188683

RESUMO

BACKGROUND: Osteosarcoma is one of the most common bone tumors among children. Tumor-associated macrophages have been found to interact with tumor cells, secreting a variety of cytokines about tumor growth, metastasis, and prognosis. This study aimed to identify macrophage-associated genes (MAGs) signatures to predict the prognosis of osteosarcoma. METHODS: Totally 384 MAGs were collected from GSEA software C7: immunologic signature gene sets. Differential gene expression (DGE) analysis was performed between normal bone samples and osteosarcoma samples in GSE99671. Kaplan-Meier survival analysis was performed to identify prognostic MAGs in TARGET-OS. Decision curve analysis (DCA), nomogram, receiver operating characteristic (ROC), and survival curve analysis were further used to assess our risk model. All genes from TARGET-OS were used for gene set enrichment analysis (GSEA). Immune infiltration of osteosarcoma sample was calculated using CIBERSORT and ESTIMATE packages. The independent test data set GSE21257 from gene expression omnibus (GEO) was used to validate our risk model. RESULTS: 5 MAGs (MAP3K5, PML, WDR1, BAMBI, and GNPDA2) were screened based on protein-protein interaction (PPI), DGE, and survival analysis. A novel macrophage-associated risk model was constructed to predict a risk score based on multivariate Cox regression analysis. The high-risk group showed a worse prognosis of osteosarcoma (p < 0.001) while the low-risk group had higher immune and stromal scores. The risk score was identified as an independent prognostic factor for osteosarcoma. MAGs model for diagnosis of osteosarcoma had a better net clinical benefit based on DCA. The nomogram and ROC curve also effectively predicted the prognosis of osteosarcoma. Besides, the validation result was consistent with the result of TARGET-OS. CONCLUSIONS: A novel macrophage-associated risk score to differentiate low- and high-risk groups of osteosarcoma was constructed based on integrative bioinformatics analysis. Macrophages might affect the prognosis of osteosarcoma through macrophage differentiation pathways and bring novel sights for the progression and prognosis of osteosarcoma.

7.
Int J Nanomedicine ; 15: 7215-7234, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061377

RESUMO

BACKGROUND: With excellent shape memory and superelastic properties, shape memory alloy (SMA) is an ideal actuator, and it can form smart structure for different applications in medical field. However, SMA devices cause apparent thermal damage to the surrounding tissues when it works in vivo, making the application of smart structure that is composed of SMA actuator in vivo is greatly limited. METHODS: In this paper, coating (APA) with PLA as the main body to limit the heat conduction, a multifunctional Ag nanoparticles (AgNPs)/polylactic acid (PLA)/Al2O3 was synthesized. The Al2O3 layer was formed by micro-arc oxidation (MAO) and AgNPs were synthesized by silver nitrate and ethylene glycol. Scanning electron microscopy, transmission electron microscope, and Fourier transform infrared spectra were applied to analyze the morphology and characterization of APA coating. The antimicrobial activity, thermal insulation activity, and biocompatibility of APA coating were furtherly explored and verified through animal experiments and immunohistochemistry. RESULTS: With different particle sizes and concentrations of AgNPs, APA multi-functional films were successfully prepared. The Al2O3 layer was closely combined with SMA and formed a porous surface, so the PLA and AgNPs layers can firmly adhere to SMA, thus reducing the release of nickel ions in SMA. AgNPs gave APA coating excellent antibacterial activity and effectively inhibited the growth of Staphylococcus aureus. In addition, coupled with the low thermal conductivity of PLA and Al2O3, AgNPs were tightly anchored on the surface of PLA, which has high infrared reflectivity, making the APA coating obtain good thermal insulation performance. CONCLUSION: We have successfully prepared the APA coating and obtained the optimum amount of AgNPs, which makes it have good thermal insulation performance, good antibacterial activity and good biocompatibility, which provides a new prospect for the application of SMA.


Assuntos
Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Níquel/farmacologia , Temperatura , Titânio/farmacologia , Óxido de Alumínio/farmacologia , Animais , Linhagem Celular , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Camundongos , Testes de Sensibilidade Microbiana , Poliésteres/farmacologia , Coelhos , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos
8.
Eur Spine J ; 29(5): 1147-1158, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32200495

RESUMO

PURPOSE: To evaluate the safety and efficacy of a system aiming to correct scoliosis called "electromagnetically controlled shape-memory alloy rods" (EC-SMAR) used in a rabbit model. METHODS: We heat-treated shape-memory alloy (SMA) rods to achieve a transition temperature between 34 and 47 °C and a C-shape austenite phase. We then developed a water-cooled generator capable of generating an alternating magnetic field (100 kHz) for induction heating. We next studied the efficacy of this system in vitro and determined some parameters prior to proceeding with animal experiments. We then employed a rabbit model, in which we fixed a straight rod along the spinous processes intraoperatively, and conducted induction heating postoperatively every 4 days for 1 month, while performing periodic X-ray assessments. RESULTS: Significant kyphotic deformations with Cobb angles of about 45° (p < 0.01) were created in five rabbits, and no complications occurred throughout the experiment. The rabbits are still very much alive and do not show any signs of discomfort. CONCLUSIONS: This is the first system that can modulate spinal deformation in a gradual, contactless, noninvasive manner through electromagnetic induction heating applied to SMA alloy rods. Although this study dealt with healthy spines, it provides promising evidence that this device also has the capacity to correct human kyphosis and even scoliosis in the future. These slides can be retrieved under Electronic Supplementary Material.


Assuntos
Escoliose , Ligas de Memória da Forma , Ligas , Animais , Níquel , Coelhos , Escoliose/cirurgia , Coluna Vertebral , Titânio
9.
Sci Rep ; 9(1): 17290, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754224

RESUMO

Osteoporosis is one of the most common metabolic bone disease among pre- and postmenopausal women. As the precursors of osteoclast cells, circulating monocytes play important role in bone destruction and remodeling. The aim of study is to identify potential key genes and pathways correlated with the pathogenesis of osteoporosis. Then we construct novel estimation model closely linked to the bone mineral density (BMD) with key genes. Weighted gene co-expression network analysis (WGCNA) were conducted by collecting gene data set with 80 samples from gene expression omnibus (GEO) database. Besides, hub genes were identified by series of bioinformatics and machine learning algorithms containing protein-protein interaction (PPI) network, receiver operating characteristic curve and Pearson correlation. The direction of correlation coefficient were performed to screen for gene signatures with high BMD and low BMD. A novel BMD score system was put forward based on gene set variation analysis and logistic regression, which was validated by independent data sets. We identified six modules correlated with BMD. Finally 100 genes were identified as the high bone mineral density signatures while 130 genes were identified as low BMD signatures. Besides, we identified the significant pathway in monocytes: ribonucleoprotein complex biogenesis. What's more, our score validated it successfully.


Assuntos
Densidade Óssea/genética , Monócitos/metabolismo , Osteoporose/genética , Ribonucleoproteínas/biossíntese , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Aprendizado de Máquina , Análise de Sequência com Séries de Oligonucleotídeos , Osteoporose/sangue , Pós-Menopausa/sangue , Pós-Menopausa/genética , Pré-Menopausa/sangue , Pré-Menopausa/genética , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...