Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 11: 1342476, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808136

RESUMO

Human Immunodeficiency Virus (HIV) remains a global health challenge, and novel approaches to improve HIV control are significantly important. The cell and gene therapy product AGT103-T was previously evaluated (NCT04561258) for safety, immunogenicity, and persistence in seven patients for up to 180 days post infusion. In this study, we sought to investigate the impact of AGT103-T treatment upon analytical treatment interruptions (ATIs). Six patients previously infused with AGT103-T were enrolled into an ATI study (NCT05540964), wherein they suspended their antiretroviral therapy (ART) until their viral load reached 100,000 copies/mL in two successive visits, or their CD4 count was reduced to below 300 cells/µL. During the ATI, all patients experienced viral rebound followed by a notable expansion in HIV specific immune responses. The participants demonstrated up to a five-fold increase in total CD8 counts over baseline approximately 1-2 weeks followed by the peak viremia. This coincided with a rise in HIV-specific CD8 T cells, which was attributed to the increase in antigen availability and memory recall. Thus, the protocol was amended to include a second ATI with the first ATI serving as an "auto-vaccination." Four patients participated in a second ATI. During the second ATI, the Gag-specific CD8 T cells were either maintained or rose in response to viral rebound and the peak viremia was substantially decreased. The patients reached a viral set point ranging from 7,000 copies/mL to 25,000 copies/mL. Upon resuming ART, all participants achieved viral control more rapidly than during the first ATI, with CD4 counts remaining within 10% of baseline measurements and without any serious adverse events or evidence of drug resistance. In summary, the rise in CD8 counts and the viral suppression observed in 100% of the study participants are novel observations demonstrating that AGT103-T gene therapy when combined with multiple ATIs, is a safe and effective approach for achieving viral control, with viral setpoints consistently below 25,000 copies/mL and relatively stable CD4 T cell counts. We conclude that HIV cure-oriented cell and gene therapy trials should include ATI and may benefit from designs that include multiple ATIs when induction of CD8 T cells is required to establish viral control.

2.
Commun Biol ; 7(1): 583, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755265

RESUMO

Tumor-associated macrophages of the M2 phenotype promote cancer initiation and progression. Importantly, M2 macrophage-derived exosomes play key roles in the malignancy of cancer cells. Here, we report that circTMCO3 is upregulated in ovarian cancer patients, and its high expression indicates poor survival. M2-derived exosomes promote proliferation, migration, and invasion in ovarian cancer, but these effects are abolished by knockdown of circTMCO3. Furthermore, circTMCO3 functions as a competing endogenous RNA for miR-515-5p to reduce its abundance, thus upregulating ITGA8 in ovarian cancer. miR-515-5p inhibits ovarian cancer malignancy via directly downregulating ITGA8. The decreased oncogenic activity of circTMCO3-silencing exosomes is reversed by miR-515-5p knockdown or ITGA8 overexpression. Exosomal circTMCO3 promotes ovarian cancer progression in nude mice. Thus, M2 macrophage-derived exosomes promote malignancy by delivering circTMCO3 and targeting the miR-515-5p/ITGA8 axis in ovarian cancer. Our findings not only provide mechanistic insights into ovarian cancer progression, but also suggest potential therapeutic targets.


Assuntos
Exossomos , Camundongos Nus , MicroRNAs , Neoplasias Ovarianas , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Humanos , Exossomos/metabolismo , Exossomos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Macrófagos/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Proliferação de Células , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Movimento Celular
3.
Diabetes Metab Syndr Obes ; 15: 3555-3564, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36411787

RESUMO

Background: This study aimed to distinguish the risk factors for type 2 diabetes mellitus (T2DM) and construct a predictive model of T2DM in Japanese adults with abdominal obesity. Methods: This study was a post hoc analysis. A total of 2012 individuals with abdominal obesity were included and randomly divided into training and validation groups at 70% (n = 1518) and 30% (n = 494), respectively. The LASSO method was used to screen for risk variables for T2DM, and to construct a nomogram incorporating the selected risk factors in the training group. We used the C-index, calibration plot, decision curve analysis, and cumulative hazard analysis to test the discrimination, calibration and clinical significance of the nomogram. Results: In the training cohort, the C-index and receiver operating characteristic were 0.819 and the 95% CI was 0.776-0.858, with a specificity and sensitivity of 77% and 74.68%, respectively. In the validation cohort, the C-index was 0.853; sensitivity and specificity were 77.6% and 88.1%, respectively. The decision curve analysis showed that the model's prediction was effective and cumulative hazard analysis demonstrated that the high-risk score group was more likely to develop T2DM than the low-risk score group. Conclusion: This nomogram may help clinicians screen abdominal obesity at a high risk for T2DM.

4.
Front Immunol ; 13: 1012051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275712

RESUMO

Human Vγ9Vδ2 T cells are attractive candidates for cancer immunotherapy due to their potent capacity for tumor recognition and cytolysis of many tumor cell types. However, efforts to deploy clinical strategies for Vγ9Vδ2 T cell cancer therapy are hampered by insufficient potency. We are pursuing an alternate strategy of modifying tumors to increase the capacity for Vγ9Vδ2 T cell activation, as a means for strengthening the anti-tumor response by resident or ex vivo manufactured Vγ9Vδ2 T cells. Vγ9Vδ2 T cells are activated in vitro by non-peptidic antigens including isopentenyl pyrophosphate (IPP), a substrate of farnesyl diphosphate synthase (FDPS) in the pathway for biosynthesis of isoprenoids. In an effort to improve in vivo potency of Vγ9Vδ2 T cells, we reduced FDPS expression in tumor cells using a lentivirus vector encoding a short-hairpin RNA that targets FDPS mRNA (LV-shFDPS). Prostate (PC3) or hepatocellular carcinoma (Huh-7) cells transduced with LV-shFDPS induced Vγ9Vδ2 T cell stimulation in vitro, resulting in increased cytokine expression and tumor cell cytotoxicity. Immune deficient mice implanted with LV-shFDPS transduced tumor cells showed dramatic responses to intraperitoneal injection of Vγ9Vδ2 T cells with strong suppression of tumor growth. In vivo potency was increased by transducing tumor cells with a vector expressing both shFDPS and human IL-2. Tumor suppression by Vγ9Vδ2 T cells was dose-dependent with greater effects observed in mice injected with 100% LV-shFDPS transduced cells compared to mice injected with a mixture of 50% LV-shFDPS transduced cells and 50% control (no vector) tumor cells. Delivery of LV-shFDPS by intratumoral injection was insufficient to knockdown FDPS in the majority of tumor cells, resulting in insignificant tumor suppression by Vγ9Vδ2 T cells. Thus, Vγ9Vδ2 T cells efficiently targeted and suppressed tumors expressing shFDPS in mouse xenotransplant models. This proof-of-concept study demonstrates the potential for suppression of genetically modified tumors by human Vγ9Vδ2 T cells and indicates that co-expression of cytokines may boost the anti-tumor effect.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Camundongos , Animais , Linfócitos T , Geraniltranstransferase/genética , Geraniltranstransferase/farmacologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Interleucina-2/farmacologia , Xenoenxertos , RNA Mensageiro , RNA
5.
J Obstet Gynaecol Res ; 48(12): 3171-3178, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36173004

RESUMO

AIM: Cervical cancer has attracted increasing attention in recent years, and the incidence has shown a trend of younger age. Therefore, it is an effective method to regulate the progression of cervical cancer through new prognostic biomarkers. The purpose of this study was to evaluate the potential of lncRNA LAMTOR5-AS1 (LAMTOR5-AS1) as a prognostic biomarker and reveal its regulatory role in cervical cancer. METHODS: A total of 120 patients with cervical cancer were selected as research subjects to verify the prognostic effect of LAMTOR5-AS1 in a series of experiments. The expression of LAMTOR5-AS1 in cervical cancer tissues and cells was determined by polymerase chain reaction assay. The proliferation, migration, and invasion ability of cervical cancer cells were evaluated by Cell Counting Kit-8 (CCK-8) and Transwell assay. Luciferase reporter gene detection was used to determine the mechanism of LAMTOR5-AS1 targeting miR-210-3p, and to reflect the prognostic value of LAMTOR5-AS1 according to statistical methods. RESULTS: LAMTOR5-AS1 decreased in cervical cancer tissues, while miR-210-3p expression increased. In the study of cervical cancer cells, it was found that the LAMTOR5-AS1 sponge miR-210-3p was associated with the malignant progression of cervical cancer. Overexpression of LAMTOR5-AS1 could effectively inhibit the development of cervical cancer cells and might be chosen as a prognostic biomarker of cervical cancer. CONCLUSIONS: LAMTOR5-AS1 sponges miR-210-3p and modulates the progression of cervical cancer, which predict the prognosis of cervical cancer patients.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias do Colo do Útero , Feminino , Humanos , RNA Longo não Codificante/genética , Neoplasias do Colo do Útero/patologia , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Biomarcadores
6.
Mol Ther Methods Clin Dev ; 17: 1048-1060, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32462053

RESUMO

Activation, infection, and eventual depletion of human immunodeficiency virus (HIV)-specific cluster of differentiation 4 (CD4) T cells are the crucial pathogenetic events in acquired immunodeficiency syndrome (AIDS). We developed a cell and gene therapy to reconstitute HIV-specific CD4 T cells and prevent their destruction by HIV. Antigen-specific CD4 T cells will provide helper functions to support antiviral cytotoxic T lymphocyte (CTL) function and the production of virus-specific antibodies. However, ex vivo expansion of HIV-specific CD4 T cells is poor and previous gene therapies focused on bulk CD4 T cells without enriching for an antigen-specific subset. We developed a method for manufacturing autologous CD4+ T cell products highly enriched with Gag-specific T cells. Rare Gag-specific CD4 T cells in peripheral blood mononuclear cells (PBMCs) were increased nearly 1,000-fold by stimulating PBMC with Gag peptides, followed by depleting nontarget cells and transducing with lentivirus vector AGT103 to protect against HIV-mediated depletion and inhibit HIV release from latently infected cells. The average percentage of HIV-specific CD4 cells in the final products was 15.13%, and the average yield was 7 × 108 cells. The protocol for clinical-scale manufacturing of HIV-specific and HIV-resistant CD4 T cells is an important step toward effective immunotherapy for HIV disease.

7.
Front Immunol ; 9: 1305, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29937769

RESUMO

Human gamma delta T cells have extraordinary properties including the capacity for tumor cell killing. The major gamma delta T cell subset in human beings is designated Vγ9Vδ2 and is activated by intermediates of isoprenoid biosynthesis or aminobisphosphonate inhibitors of farnesyldiphosphate synthase. Activated cells are potent for killing a broad range of tumor cells and demonstrated the capacity for tumor reduction in murine xenotransplant tumor models. Translating these findings to the clinic produced promising initial results but greater potency is needed. Here, we review the literature on gamma delta T cells in cancer therapy with emphasis on the Vγ9Vδ2 T cell subset. Our goal was to examine obstacles preventing effective Vγ9Vδ2 T cell therapy and strategies for overcoming them. We focus on the potential for local activation of Vγ9Vδ2 T cells within the tumor environment to increase potency and achieve objective responses during cancer therapy. The gamma delta T cells and especially the Vγ9Vδ2 T cell subset, have the potential to overcome many problems in cancer therapy especially for tumors with no known treatment, lacking tumor-specific antigens for targeting by antibodies and CAR-T, or unresponsive to immune checkpoint inhibitors. Translation of amazing work from many laboratories studying gamma delta T cells is needed to fulfill the promise of effective and safe cancer immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...