Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(13): e2207514, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36808714

RESUMO

Developing full-spectrum photocatalysts with simultaneous broadband light absorption, excellent charge separation, and high redox capabilities is becoming increasingly significant. Herein, inspired by the similarities in crystalline structures and compositions, a unique 2D-2D Bi4 O5 I2 /BiOBr:Yb3+ ,Er3+ (BI-BYE) Z-scheme heterojunction with upconversion (UC) functionality is successfully designed and fabricated. The co-doped Yb3+ and Er3+ harvest near-infrared (NIR) light and then convert it into visible light via the UC function, expanding the optical response range of the photocatalytic system. The intimate 2D-2D interface contact provides more charge migration channels and enhances the Förster resonant energy transfer of BI-BYE, leading to significantly improved NIR light utilization efficiency. Density functional theory (DFT) calculations and experimental results confirm that the Z-scheme heterojunction is formed and that this heterojunction endows the BI-BYE heterostructure with high charge separation and strong redox capability. Benefit from these synergies, the optimized 75BI-25BYE heterostructure exhibits the highest photocatalytic performance for Bisphenol A (BPA) degradation under full-spectrum and NIR light irradiation, outperforming BYE by 6.0 and 5.3 times, respectively. This work paves an effective approach for designing highly efficient full-spectrum responsive Z-scheme heterojunction photocatalysts with UC function.

2.
ACS Appl Mater Interfaces ; 14(32): 36966-36979, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35921222

RESUMO

Bacterial infection greatly affects the rate of wound healing. Both photothermal and photodynamic antibacterial therapies activated by near-infrared (NIR) light with semiconductor nanomedicine are two effective approaches to address bacterial infections, but they cannot coexist synergistically to kill bacteria more efficiently because of the limitation of the band structure. Here, inspired by the natural core-shell structure and photosynthesis simultaneously, polypyrrole (PPy) is synthesized in the two-dimensional restricted area of the layered bismuth oxychloride (BiOCl) nanosheets through the in situ ultrasonic recombination method. The atomic-level interface contact and bonding formed in the PPy-BiOCl intercalated nanosheets not only improve the light-to-heat conversion capabilities of PPy but also promote the transmission of PPy photogenerated charge carriers to the BiOCl semiconductor. The nanocomposites take advantage of the deeper tissue penetration under NIR light irradiation and exhibit excellent photothermal and photodynamic synergistic antibacterial activity. In addition, PPy-BiOCl intercalated nanosheets have good biocompatibility and accelerate wound healing through their antimicrobial activity and skin repair function. The space-confined synthesis of thin PPy nanosheets in layered structures offers an efficient NIR photoresponsive nanomedicine for the treatment of pathogen infection, with promising applications in infected wound healing.


Assuntos
Polímeros , Pirróis , Antibacterianos/química , Antibacterianos/farmacologia , Bismuto , Polímeros/química , Pirróis/química , Pirróis/farmacologia , Cicatrização
3.
Mater Today Bio ; 15: 100292, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35634172

RESUMO

Recurrent bacterial infection is a major problem that threatens the tissue repair process. However, most current therapeutic strategies fail to deal with management of the overlap dynamics of bacterial killing and tissue repair. Here, in accord with the different responses of eukaryotic and prokaryotic cells to electric potential, we developed high performance photoelectric BiOCl nanosheets that dynamically switch between conditions that favor either tissue regrowth or antibacterial microenvironments due to light stimulated and bi-modal switching of their surface electrical polarization. In vitro assays demonstrate that, under light illumination, the mannitol modified BiOCl nanosheets show high relative surface potential and achieve robust antibacterial performance. Conversely, under dark conditions, the nanosheets exhibit relatively low surface potential and promote Bone Marrow Stem Cell (BMSCs) proliferation. In vivo studies indicate that BiOCl nanosheets with light switch capabilities promote the significant regeneration of infected skin wounds. This work offers a new insight into treating recurrent bacterial infections with photoelectric biomaterials for light controlled selection of alternative electrical microenvironments, thereby benefiting the capability for either antisepsis or repair of damaged tissues.

4.
J Environ Sci (China) ; 115: 76-87, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34969479

RESUMO

For better use of solar energy, the development of efficient broadband photocatalyst has attracted extraordinary attention. In this study, a ternary composite consisting of Sr2LaF7:Yb3+,Er3+ upconversion (UC) nanocrystals and Bi nanoparticles loaded BiOBr nanosheets with oxygen vacancies (OVs, SLFBB) was designed and synthesized by multistep solvent-thermal method. Mechanisms of in-situ formation of Bi nanoparticles and OVs in BiOBr/Sr2LaF7:Yb3+,Er3+ composites (SFLB) are clarified. The Bi metal and OVs enhanced the light-harvesting capacity in the region of visible-near-infrared (Vis-NIR), and promoted the separation of electron-hole (e-/h+) pairs. Furthermore, the surface plasmon resonance (SPR) effect of Bi metal can improve the energy transfer from Sr2LaF7:Yb3+,Er3+ to BiOBr via nonradiative energy transfer process, resulting in enhancing the light utilization from upconverting NIR into Vis light. Due to the synergistic effects of UC function, SPR and OVs, the SFLBB exhibited obviously enhanced photocatalytic ability for the degradation of BPA with a rate of 8.9 × 10-3 min-1, which is about 2.78 times higher than 3.2 × 10-3 min-1 of BiOBr (BOB) under UV-Vis-NIR light irradiation. This work provides a novel strategy for the project of high-efficiency Bismuth-based broadband photocatalysts, which is helpful to further understand the mechanism of enhanced photocatalysis by UC function and plasmonic effect.


Assuntos
Bismuto , Oxigênio , Catálise , Luz
5.
J Colloid Interface Sci ; 588: 838-846, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33309147

RESUMO

Low luminescence efficiency of rare-earth ions dopedupconversion (UC) nanomaterials is still a major limitation for their applications.Here, based on bismuth oxychloride nanosheets that show efficient photocarriers separation due to combining spontaneous polarization and layered semiconductor, we report a new carbon heterovalent doping strategy for efficient UC luminescence enhancement by suppressing the intermediate excited states of Er3+ ions. The first-principles calculations and photoelectrochemical characterizations provide evidences that the replacement of C ions for Cl strengthen the spontaneous polarization and inter electric field (IEF) of bismuth oxychloride nanosheets, which further improve the photocarriers separation efficiency. Under 808 or 980 nm excitation, the emission intensity of 4I13/2 energy level of Er3+ ions (1550 nm) increase slightly with C doping, but the its decay time and the visible UC emission are improved tremendously at the same time. We show that the recombination rate of intermediate excited state electrons of Er3+ ions with the ground state is inhibited by the enhanced IEF, which promotes the energy reabsorption transition to upper energy levels, thus enhancing the visible UC emission. This work not only may provide a new insight into the method for engineering of UC emissions but also deepen the understanding for layered semiconducting material to modify the transition of Lanthanide ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...