Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 10: 216, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930836

RESUMO

There are five sites at which radial nerve entrapment at the elbow has been commonly reported. These include the level of the fibrous bands within the extensor carpi radialis brevis, the thickened fascial tissue at the radiocapitellar joint, the leash of Henry, the arcade of Frohse, and the distal border of the supinator muscle. This review describes the anatomy of the radial nerve at the elbow and the surrounding structures, and then provides an overview of the literature supporting the use of ultrasound to assist in the evaluation of suspected radial neuropathy at the elbow. This review concludes with a suggested ultrasonographic approach for the systematic evaluation of suspected radial neuropathy at the elbow.

2.
Photoacoustics ; 11: 28-35, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30105204

RESUMO

Examining the dynamics of an agent in the tumor microenvironment can offer critical insights to the influx rate and accumulation of the agent. Intratumoral kinetic characterization in the in vivo setting can further elicudate distribution patterns and tumor microenvironment. Dynamic contrast-enhanced Multispectral Optoacoustic Tomographic imaging (DCE-MSOT) acquires serial MSOT images with the administration of an exogenous contrast agent over time. We tracked the dynamics of a tumor-targeted contrast agent, HypoxiSense 680 (HS680), in breast xenograft mouse models using MSOT. Arterial input function (AIF) approach with MSOT imaging allowed for tracking HS680 dynamics within the mouse. The optoacoustic signal for HS680 was quantified using the ROI function in the ViewMSOT software. A two-compartment pharmacokinetics (PK) model constructed in MATLAB to fit rate parameters. The contrast influx (kin) and outflux (kout) rate constants predicted are kin = 1.96 × 10-2 s-1 and kout = 9.5 × 10-3 s-1 (R = 0.9945).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...