Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.327
Filtrar
1.
Plant J ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923085

RESUMO

Cotton is a globally cultivated crop, producing 87% of the natural fiber used in the global textile industry. The pigment glands, unique to cotton and its relatives, serve as a defense structure against pests and pathogens. However, the molecular mechanism underlying gland formation and the specific role of pigment glands in cotton's pest defense are still not well understood. In this study, we cloned a gland-related transcription factor GhHAM and generated the GhHAM knockout mutant using CRISPR/Cas9. Phenotypic observations, transcriptome analysis, and promoter-binding experiments revealed that GhHAM binds to the promoter of GoPGF, regulating pigment gland formation in cotton's multiple organs via the GoPGF-GhJUB1 module. The knockout of GhHAM significantly reduced gossypol production and increased cotton's susceptibility to pests in the field. Feeding assays demonstrated that more than 80% of the cotton bollworm larvae preferred ghham over the wild type. Furthermore, the ghham mutants displayed shorter cell length and decreased gibberellins (GA) production in the stem. Exogenous application of GA3 restored stem cell elongation but not gland formation, thereby indicating that GhHAM controls gland morphogenesis independently of GA. Our study sheds light on the functional differentiation of HAM proteins among plant species, highlights the significant role of pigment glands in influencing pest feeding preference, and provides a theoretical basis for breeding pest-resistant cotton varieties to address the challenges posed by frequent outbreaks of pests.

2.
Mol Cell Endocrinol ; : 112292, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830447

RESUMO

RESEARCH QUESTION: Granulosa cells (GCs) dysfunction plays a crucial role in the pathogenesis of polycystic ovary syndrome (PCOS). It is reported that YTH domain-containing family protein 2 (YTHDF2) is upregulated in mural GCs of PCOS patients. What effect does the differential expression of YTHDF2 have in PCOS patients? DESIGN: Mural GCs and cumulus GCs from 15 patients with PCOS and 15 ovulatory controls and 4 cases of pathological sections in each group were collected. Real-time PCR, Western Blot, immunohistochemistry, and immunofluorescence experiments were conducted to detect gene and protein expression. RNA immunoprecipitation assay was performed to evaluate the binding relationship between YTHDF2 and MSS51. Mitochondrial morphology, cellular ATP and ROS levels and glycolysis-related gene expression were detected after YTHDF2 overexpression or MSS51 inhibition. RESULTS: In the present study, we found that YTHDF2 was upregulated in GCs of PCOS patients while MSS51 was downregulated. YTHDF2 protein can bind to MSS51 mRNA and affect MSS51 expression. The reduction of MSS51 expression or the increase in YTHDF2 expression can lead to mitochondrial damage, reduced ATP levels, increased ROS levels and reduced expression of LDHA, PFKP and PKM. CONCLUSIONS: YTHDF2 may regulate the expression of MSS51, affecting the structure and function of mitochondria in GCs and interfering with cellular glycolysis, which may disturb the normal biological processes of GCs and follicle development in PCOS patients.

3.
Pediatr Blood Cancer ; : e31099, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845144

RESUMO

BACKGROUND: The clinical relevance of BRAF-V600E alleles in peripheral blood mononuclear cells (PBMCs) and the prognostic impact of the mutants in cell-free (cf) and PBMC DNAs of Langerhans cell histiocytosis (LCH) have not been fully clarified in pediatric LCH. METHODS: We retrospectively determined the levels of BRAF-V600E mutation in paired plasma and PBMC samples at the time of diagnosis of LCH. Subsequently, we performed a separate or combined analysis of the clinical and prognostic impact of the mutants. RESULTS: We assessed BRAF-V600E mutation in peripheral blood from 94 patients of childhood LCH. Our data showed that cfBRAF-V600E was related to young age, multiple-system (MS) disease, involvements of organs with high risk, increased risk of relapse, and worse progression-free survival (PFS) of patients. We also observed that the presence of BRAF-V600E in PBMCs at baseline was significantly associated with MS LCH with risk organ involvement, younger age, and disease progression or relapse. The coexisting of plasma(+)/PBMC(+) identified 36.2% of the patients with the worst outcome, and the hazard ratio was more significant than either of the two alone or neither, indicating that combined analysis of the mutation in plasma and PBMCs was more accurate to predict relapse than evaluation of either one. CONCLUSIONS: Concurrent assessment of BRAF-V600E mutation in plasma and PBMCs significantly impacted the prognosis of children with LCH. Further prospective studies with larger cohorts need to validate the results of this study.

4.
Fa Yi Xue Za Zhi ; 40(2): 154-163, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38847030

RESUMO

OBJECTIVES: To develop a deep learning model for automated age estimation based on 3D CT reconstructed images of Han population in western China, and evaluate its feasibility and reliability. METHODS: The retrospective pelvic CT imaging data of 1 200 samples (600 males and 600 females) aged 20.0 to 80.0 years in western China were collected and reconstructed into 3D virtual bone models. The images of the ischial tuberosity feature region were extracted to create sex-specific and left/right site-specific sample libraries. Using the ResNet34 model, 500 samples of different sexes were randomly selected as training and verification set, the remaining samples were used as testing set. Initialization and transfer learning were used to train images that distinguish sex and left/right site. Mean absolute error (MAE) and root mean square error (RMSE) were used as primary indicators to evaluate the model. RESULTS: Prediction results varied between sexes, with bilateral models outperformed left/right unilateral ones, and transfer learning models showed superior performance over initial models. In the prediction results of bilateral transfer learning models, the male MAE was 7.74 years and RMSE was 9.73 years, the female MAE was 6.27 years and RMSE was 7.82 years, and the mixed sexes MAE was 6.64 years and RMSE was 8.43 years. CONCLUSIONS: The skeletal age estimation model, utilizing ischial tuberosity images of Han population in western China and employing the ResNet34 combined with transfer learning, can effectively estimate adult ischium age.


Assuntos
Determinação da Idade pelo Esqueleto , Aprendizado Profundo , Imageamento Tridimensional , Ísquio , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Ísquio/diagnóstico por imagem , Adulto , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Imageamento Tridimensional/métodos , China , Estudos Retrospectivos , Determinação da Idade pelo Esqueleto/métodos , Idoso , Adulto Jovem , Idoso de 80 Anos ou mais , Reprodutibilidade dos Testes
6.
J Phys Chem A ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917472

RESUMO

The identification of the non-noble metal constituted TaO cluster as a potential analogue to the noble metal Au is significant for the development of tailored materials. It leverages the superatom concept to engineer properties with precision. However, the impact of incrementally integrating TaO units on the electronic configurations and properties within larger TaO-based clusters remains to be elucidated. By employing the density functional theory calculations, the global minima and low-lying isomers of the TanOn (n = 2-5) clusters were determined, and their structural evolution was disclosed. In the cluster series, Ta5O5 was found to possess the highest electron affinity (EA) with a value of 2.14 eV, based on which a dual external field (DEF) strategy was applied to regulate the electronic property of the cluster. Initially, the electron-withdrawing CO ligand was affixed to Ta5O5, followed by the application of an oriented external electric field (OEEF). The CO ligation was found to be able to enhance the Ta5O5 cluster's electron capture capability by adjusting its electron energy levels, with the EA of Ta5O5(CO)4 peaking at 2.58 eV. Subsequently, the introduction of OEEF further elevated the EA of the CO-ligated cluster. Notably, OEEF, when applied along the +x axis, was observed to sharply increase the EA to 3.26 eV, meeting the criteria for superhalogens. The enhancement of EA in response to OEEF intensity can be quantified as a functional relationship. This finding highlights the advantage of OEEF over conventional methods, demonstrating its capacity for precise and continuous modulation of cluster EAs. Consequently, this research has adeptly transformed tantalum oxide clusters into superhalogen structures, underscoring the effectiveness of the DEF strategy in augmenting cluster EAs and its promise as a viable tool for the creation of superhalogens.

7.
Medicine (Baltimore) ; 103(25): e38551, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905376

RESUMO

This research investigates the causal relationships among gut microbiota, inflammatory proteins, and inflammatory bowel disease (IBD), including crohn disease (CD) and ulcerative colitis (UC), and identifies the role of inflammatory proteins as potential mediators. Our study analyzed gut microbiome data from 13,266 samples collected by the MiBioGen alliance, along with inflammatory protein data from recent research by Zhao et al, and genetic data on CD and UC from the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC). We used Mendelian randomization (MR) to explore the associations, complemented by replication, meta-analysis, and multivariable MR techniques for enhanced accuracy and robustness. Our analysis employed several statistical methods, including inverse-variance weighting, MR-Egger, and the weighted median method, ensuring comprehensive and precise evaluation. After MR analysis, replication and meta-analysis, we revealed significant associations between 11 types of gut microbiota and 17 inflammatory proteins were associated with CD and UC. Mediator MR analysis and multivariable MR analysis showed that in CD, the CD40L receptor mediated the causal effect of Defluviitaleaceae UCG-011 on CD (mediation ratio 8.3%), and the Hepatocyte growth factor mediated the causal effect of Odoribacter on CD (mediation ratio 18%). In UC, the C-C motif chemokine 4 mediated the causal effect of Ruminococcus2 on UC (mediation ratio 4%). This research demonstrates the interactions between specific gut microbiota, inflammatory proteins, and CD and UC. Furthermore, the CD40L receptor may mediate the relationship between Defluviitaleaceae UCG-011 and CD; the Hepatocyte growth factor may mediate the relationship between Odoribacter and CD; and the C-C motif chemokine 4 may mediate the relationship between Ruminococcus2 and UC. The identified associations and mediation effects offer insights into potential therapeutic approaches targeting the gut microbiome for managing CD and UC.


Assuntos
Microbioma Gastrointestinal , Análise da Randomização Mendeliana , Humanos , Microbioma Gastrointestinal/genética , Doença de Crohn/microbiologia , Doença de Crohn/genética , Colite Ulcerativa/microbiologia , Colite Ulcerativa/genética , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/genética
8.
Clin Transl Oncol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884919

RESUMO

Tumor-Treating Fields (TTFields) use intermediate-frequency and low-intensity electric fields to inhibit tumor cells. However, their mechanisms are still not well understood. This article reviews their key antitumor mechanisms at the cellular and molecular levels, including inhibition of proliferation, induction of death, disturbance of migration, and activation of the immune system. The multifaceted biological effects in combination with other cancer treatments are also summarized. The deep insight into their mechanism will help develop more potential antitumor treatments.

9.
World J Gastroenterol ; 30(21): 2777-2792, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38899329

RESUMO

BACKGROUND: Obesity is associated with a significantly increased risk for chronic diarrhea, which has been proposed as Linghu's obesity-diarrhea syndrome (ODS); however, its molecular mechanisms are largely unknown. AIM: To reveal the transcriptomic changes in the jejunum involved in ODS. METHODS: In a cohort of 6 ODS patients (JOD group), 6 obese people without diarrhea (JO group), and 6 healthy controls (JC group), high-throughput sequencing and bioinformatics analyses were performed to identify jejunal mucosal mRNA expression alterations and dysfunctional biological processes. In another cohort of 16 ODS patients (SOD group), 16 obese people without diarrhea (SO group), and 16 healthy controls (SC group), serum diamine oxidase (DAO) and D-lactate (D-LA) concentrations were detected to assess changes in intestinal barrier function. RESULTS: The gene expression profiles of jejunal mucosa in the JO and JC groups were similar, with only 1 differentially expressed gene (DEG). The gene expression profile of the JOD group was significantly changed, with 411 DEGs compared with the JO group and 211 DEGs compared with the JC group, 129 of which overlapped. The enrichment analysis of these DEGs showed that the biological processes such as digestion, absorption, and transport of nutrients (especially lipids) tended to be up-regulated in the JOD group, while the biological processes such as rRNA processing, mitochondrial translation, antimicrobial humoral response, DNA replication, and DNA repair tended to be down-regulated in the JOD group. Eight DEGs (CDT1, NHP2, EXOSC5, EPN3, NME1, REG3A, PLA2G2A, and PRSS2) may play a key regulatory role in the pathological process of ODS, and their expression levels were significantly decreased in ODS patients (P < 0.001). In the second cohort, compared with healthy controls, the levels of serum intestinal barrier function markers (DAO and D-LA) were significantly increased in all obese individuals (P < 0.01), but were higher in the SOD group than in the SO group (P < 0.001). CONCLUSION: Compared with healthy controls and obese individuals without diarrhea, patients with Linghu's ODS had extensive transcriptomic changes in the jejunal mucosa, likely affecting intestinal barrier function and thus contributing to the obesity and chronic diarrhea phenotypes.


Assuntos
Diarreia , Perfilação da Expressão Gênica , Mucosa Intestinal , Jejuno , Obesidade , Transcriptoma , Humanos , Jejuno/metabolismo , Masculino , Projetos Piloto , Feminino , Diarreia/genética , Diarreia/etiologia , Diarreia/metabolismo , Adulto , Mucosa Intestinal/metabolismo , Obesidade/genética , Obesidade/complicações , Pessoa de Meia-Idade , Perfilação da Expressão Gênica/métodos , Estudos de Casos e Controles , Síndrome , Amina Oxidase (contendo Cobre)/genética , Amina Oxidase (contendo Cobre)/sangue , Amina Oxidase (contendo Cobre)/metabolismo , Biologia Computacional , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Doença Crônica
10.
Front Oncol ; 14: 1397246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800393

RESUMO

Background: Newly identified as a radiological concept, interstitial lung abnormalities (ILA) is emerging as a prognostic factor for lung cancer. Yet, debates persist regarding the prognostic significance of ILA in lung cancer. Our inaugural meta-analysis aimed to investigate the correlation between ILA and lung cancer outcomes, offering additional insights for clinicians in predicting patient prognosis. Methods: Articles meeting the criteria were found through PubMed, the Cochrane Library, EMBASE, and Web of Science by February 29, 2024. The outcomes evaluated were the survival rates such as overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and cancer-specific survival (CSS). Results: A total of 12 articles with 4416 patients were included in this meta-analysis. The pooled results showed that lung cancer patients with interstitial lung abnormalities had an inferior OS (n=11; HR=2.22; 95% CI=1.68-2.95; P<0.001; I2 = 72.0%; Ph<0.001), PFS (n=3; HR=1.59; 95% CI=1.08-2.32; P=0.017; I2 = 0%; Ph=0.772), and CSS (n=2; HR=4.00; 95% CI=1.94-8.25; P<0.001; I2 = 0%; Ph=0.594) than those without, however, the ILA was not significantly associated with the DFS (n=2; HR=2.07; 95% CI=0.94-7.02; P=0.066; I2 = 90.4%; Ph=0.001). Moreover, lung cancer patients with ILA were significantly correlated with male (OR=2.43; 95% CI=1.48-3.98; P<0.001), smoking history (OR=2.11; 95% CI=1.37-3.25; P<0.001), advanced age (OR=2.50; 95% CI=1.56-4.03; P<0.001), squamous carcinoma (OR=0.42; 95% CI=0.24-0.71; P=0.01), and EGFR mutation (OR=0.50; 95% CI=0.32-0.78; P=0.002). The correlation between ILA and race, stage, ALK, however, was not significant. Conclusion: ILA was a availability factors of prognosis in patients with lung cancers. These findings highlight the importance of early pulmonary fibrosis, namely ILA for prognosis in patients with lung cancer, and provide a partial rationale for future clinical work.

11.
Acta Pharmacol Sin ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811775

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the epidermal growth factor precursor homologous domain A (EGF-A) of low-density lipoprotein receptor (LDLR) in the liver and triggers the degradation of LDLR via the lysosomal pathway, consequently leading to an elevation in plasma LDL-C levels. Inhibiting PCSK9 prolongs the lifespan of LDLR and maintains cholesterol homeostasis in the body. Thus, PCSK9 is an innovative pharmacological target for treating hypercholesterolemia and atherosclerosis. In this study, we discovered that E28362 was a novel small-molecule PCSK9 inhibitor by conducting a virtual screening of a library containing 40,000 compounds. E28362 (5, 10, 20 µM) dose-dependently increased the protein levels of LDLR in both total protein and the membrane fraction in both HepG2 and AML12 cells, and enhanced the uptake of DiI-LDL in AML12 cells. MTT assay showed that E28362 up to 80 µM had no obvious toxicity in HepG2, AML12, and HEK293a cells. The effects of E28362 on hyperlipidemia and atherosclerosis were evaluated in three different animal models. In high-fat diet-fed golden hamsters, administration of E28362 (6.7, 20, 60 mg·kg-1·d-1, i.g.) for 4 weeks significantly reduced plasma total cholesterol (TC), triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C) and PCSK9 levels, and reduced liver TC and TG contents. In Western diet-fed ApoE-/- mice (20, 60 mg·kg-1·d-1, i.g.) and human PCSK9 D374Y overexpression mice (60 mg·kg-1·d-1, i.g.), administration of E28362 for 12 weeks significantly decreased plasma LDL-C levels and the area of atherosclerotic lesions in en face aortas and aortic roots. Moreover, E28362 significantly increased the protein expression level of LDLR in the liver. We revealed that E28362 selectively bound to PCSK9 in HepG2 and AML12 cells, blocked the interaction between LDLR and PCSK9, and induced the degradation of PCSK9 through the ubiquitin-proteasome pathway, which finally resulted in increased LDLR protein levels. In conclusion, E28362 can block the interaction between PCSK9 and LDLR, induce the degradation of PCSK9, increase LDLR protein levels, and alleviate hyperlipidemia and atherosclerosis in three distinct animal models, suggesting that E28362 is a promising lead compound for the treatment of hyperlipidemia and atherosclerosis.

12.
Mol Ther Oncol ; 32(2): 200813, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38817541

RESUMO

The immune response plays a crucial role in the functionality of oncolytic viruses. In this study, Albendazole, an antihelminthic drug known to modulate the immune checkpoint PD-L1, was combined with the oncolytic virus M1 (OVM1) to treat mice with either prostate cancer (RM-1) or glioma (GL261) tumors. This combination therapy enhanced anti-tumor effects in immunocompetent mice, but not in immunodeficient ones, without increasing OVM1 replication. Instead, it led to an increase in the number of CD8+ T cells within the tumor, downregulated the expression of PD1 on CD8+ T cells, and upregulated activation markers such as Ki67, CD44, and CD69 and the secretion of cytotoxic factors including interferon (IFN)-γ, granzyme B, and tumor necrosis factor (TNF)-α. Consistently, it enhanced the in vitro tumor-killing activity of lymphocytes from tumor-draining lymph nodes or spleens. The synergistic effect of Albendazole on OVM1 was abolished by depleting CD8+ T cells, suggesting a CD8+ T cell-dependent mechanism. In addition, Albendazole and OVM1 therapy increased CTLA4 expression in the spleen, and the addition of CTLA4 antibodies further enhanced the anti-tumor efficacy in vivo. In summary, Albendazole can act synergistically with oncolytic viruses via CD8+ T cell activation, and the Albendazole/OVM1 combination can overcome resistance to CTLA4-based immune checkpoint blockade therapy.

13.
Mol Neurobiol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724867

RESUMO

Helicid (HEL) has been found to possess antidepressant pharmacological activity. The paper was to testify to the precise molecular mechanism through which HEL regulates lncRNA-NONRATT030918.2 to exert an antidepressant impression in depression models. A depression model stimulated using chronic unpredictable mild stress (CUMS) was created in rats, and the depressive state of the rats was assessed through behavioral experiments. Additionally, an in vitro model of PC12 cells induced by corticosterone (CORT) was established, and cytoactive was tested using the CCK8. The subcellular localization of the NONRATT030918.2 molecule was confirmed through a fluorescence in situ hybridization experiment. The relationship between NONRATT030918.2, miRNA-128-3p, and Prim1 was analyzed using dual-luciferase reporter gene assay, RNA Binding Protein Immunoprecipitation assay, and RNA pull-down assay. The levels of NONRATT030918.2, miRNA-128-3p, and Prim1 were tested using Q-PCR. Furthermore, the levels of Prim1, Bax, Bcl-2, and caspase3 were checked through Western blot. The HEL can alleviate the depression-like behavior of CUMS rats (P < 0.05), and reduce the mortality of hippocampal via downregulating the level of NONRATT030918.2 (P < 0.05). In CORT-induced PC12 cells, intervention with HEL led to decreased expression of NONRATT030918.2 and Prim1 (P < 0.05), as well as increased expression of miRNA-128-3p (P < 0.05). This suggests that HEL regulates the expression of NONRATT030918.2 to upregulate miRNA-128-3p (P < 0.05), which in turn inhibits CORT-induced apoptosis in PC12 cells by targeting Prim1 (P < 0.05). The NONRATT030918.2/miRNA-128-3p/Prim1 axis could potentially serve as a crucial regulatory network for HEL to exert its neuroprotective effects.

14.
Int J Ophthalmol ; 17(3): 491-498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721519

RESUMO

AIM: To study the changes and effect factors of posterior corneal surface after small incision lenticule extraction (SMILE) with different myopic diopters. METHODS: Ninety eyes of 90 patients who underwent SMILE were included in this retrospective study. Patients were allocated into three groups based on the preoperative spherical equivalent (SE): low myopia (SE≥-3.00 D), moderate myopia (-3.00 D>SE>-6.00 D) and high myopia (SE≤-6.00 D). Posterior corneal surfaces were measured by a Scheimpflug camera preoperatively and different postoperative times (1wk, 1, 3, 6mo, and 1y). Posterior mean elevation (PME) at 25 predetermined points of 3 concentric circles (2-, 4-, and 6-mm diameter) above the best fit sphere was analyzed. RESULTS: All surgeries were completed uneventfully and no ectasia was found through the observation. The difference of myopia group was significant at the 2-mm ring at 1 and 3mo postoperatively (1mo: P=0.017; 3mo: P=0.018). The effect of time on ΔPME was statistically significant (2-mm ring: P=0.001; 4-mm ring: P<0.001; 6-mm ring: P<0.001). The effect of different corneal locations on ΔPME was significant except 1wk postoperatively (1mo: P=0.000; 3mo: P=0.000; 6mo: P=0.001; 1y: P=0.001). Posterior corneal stability was linearly correlated with SE, central corneal thickness, ablation depth, residual bed thickness, percent ablation depth and percent stromal bed thickness. CONCLUSION: The posterior corneal surface changes dynamically after SMILE. No protrusion is observed on the posterior corneal surface in patients with different degrees of myopia within one year after surgery. SMILE has good stability, accuracy, safety and predictability.

15.
J Nanobiotechnology ; 22(1): 275, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778401

RESUMO

BACKGROUND: Acute gouty is caused by the excessive accumulation of Monosodium Urate (MSU) crystals within various parts of the body, which leads to a deterioration of the local microenvironment. This degradation is marked by elevated levels of uric acid (UA), increased reactive oxygen species (ROS) production, hypoxic conditions, an upsurge in pro-inflammatory mediators, and mitochondrial dysfunction. RESULTS: In this study, we developed a multifunctional nanoparticle of polydopamine-platinum (PDA@Pt) to combat acute gout by leveraging mild hyperthermia to synergistically enhance UA degradation and anti-inflammatory effect. Herein, PDA acts as a foundational template that facilitates the growth of a Pt shell on the surface of its nanospheres, leading to the formation of the PDA@Pt nanomedicine. Within this therapeutic agent, the Pt nanoparticle catalyzes the decomposition of UA and actively breaks down endogenous hydrogen peroxide (H2O2) to produce O2, which helps to alleviate hypoxic conditions. Concurrently, the PDA component possesses exceptional capacity for ROS scavenging. Most significantly, Both PDA and Pt shell exhibit absorption in the Near-Infrared-II (NIR-II) region, which not only endow PDA@Pt with superior photothermal conversion efficiency for effective photothermal therapy (PTT) but also substantially enhances the nanomedicine's capacity for UA degradation, O2 production and ROS scavenging enzymatic activities. This photothermally-enhanced approach effectively facilitates the repair of mitochondrial damage and downregulates the NF-κB signaling pathway to inhibit the expression of pro-inflammatory cytokines. CONCLUSIONS: The multifunctional nanomedicine PDA@Pt exhibits exceptional efficacy in UA reduction and anti-inflammatory effects, presenting a promising potential therapeutic strategy for the management of acute gout.


Assuntos
Gota , Indóis , Polímeros , Espécies Reativas de Oxigênio , Ácido Úrico , Gota/tratamento farmacológico , Gota/metabolismo , Gota/terapia , Espécies Reativas de Oxigênio/metabolismo , Animais , Camundongos , Polímeros/química , Indóis/química , Indóis/farmacologia , Nanopartículas/química , Platina/química , Platina/farmacologia , Platina/uso terapêutico , Humanos , Peróxido de Hidrogênio/metabolismo , Hipertermia Induzida/métodos , Células RAW 264.7 , Terapia Fototérmica/métodos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Masculino
16.
Proc Natl Acad Sci U S A ; 121(21): e2313797121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38709948

RESUMO

During 2010 to 2020, Northeast Pacific (NEP) sea surface temperature (SST) experienced the warmest decade ever recorded, manifested in several extreme marine heatwaves, referred to as "warm blob" events, which severely affect marine ecosystems and extreme weather along the west coast of North America. While year-to-year internal climate variability has been suggested as a cause of individual events, the causes of the continuous dramatic NEP SST warming remain elusive. Here, we show that other than the greenhouse gas (GHG) forcing, rapid aerosol abatement in China over the period likely plays an important role. Anomalous tropospheric warming induced by declining aerosols in China generated atmospheric teleconnections from East Asia to the NEP, featuring an intensified and southward-shifted Aleutian Low. The associated atmospheric circulation anomaly weakens the climatological westerlies in the NEP and warms the SST there by suppressing the evaporative cooling. The aerosol-induced mean warming of the NEP SST, along with internal climate variability and the GHG-induced warming, made the warm blob events more frequent and intense during 2010 to 2020. As anthropogenic aerosol emissions continue to decrease, there is likely to be an increase in NEP warm blob events, disproportionately large beyond the direct radiative effects.

17.
Anal Chem ; 96(21): 8458-8466, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38710075

RESUMO

G-triplexes are G-rich oligonucleotides composed of three G-tracts and have absorbed much attention due to their potential biological functions and attractive performance in biosensing. Through the optimization of loop compositions, DNA lengths, and 5'-flanking bases of G-rich sequences, a new stable G-triplex sequence with 14 bases (G3-F15) was discovered to dramatically activate the fluorescence of Thioflavin T (ThT), a water-soluble fluorogenic dye. The fluorescence enhancement of ThT after binding with G3-F15 reached 3200 times, which was the strongest one by far among all of the G-rich sequences. The conformations of G3-F15 and G3-F15/ThT were studied by circular dichroism. The thermal stability measurements indicated that G3-F15 was a highly stable G-triplex structure. The conformations of G3-F15 and G3-F15/ThT in the presence of different metal cations were studied thoroughly by fluorescent spectroscopy, circular dichroism, and nuclear magnetic resonance. Furthermore, using the G3-F15/ThT complex as a fluorescent probe, a robust and simple turn-on fluorescent sensor for uracil-DNA glycosylase activity was developed. This study proposes a new systematic strategy to explore new functional G-rich sequences and their ligands, which will promote their applications in diagnosis, therapy, and biosensing.


Assuntos
Benzotiazóis , DNA , Corantes Fluorescentes , Uracila-DNA Glicosidase , Benzotiazóis/química , Benzotiazóis/metabolismo , Corantes Fluorescentes/química , DNA/química , DNA/metabolismo , Uracila-DNA Glicosidase/metabolismo , Uracila-DNA Glicosidase/química , Espectrometria de Fluorescência , Fluorescência , Técnicas Biossensoriais/métodos , Dicroísmo Circular , Humanos
18.
Sci Rep ; 14(1): 10740, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729987

RESUMO

Klotho regulates many pathways in the aging process, but it remains unclear how it is physiologically regulated. Because Klotho is synthesized, cleaved, and released from the kidney; activates the chief urinary K+ secretion channel (ROMK) and stimulates urinary K+ secretion, we explored if Klotho protein is regulated by dietary K+ and the potassium-regulatory hormone, Aldosterone. Klotho protein along the nephron was evaluated in humans and in wild-type (WT) mice; and in mice lacking components of Aldosterone signaling, including the Aldosterone-Synthase KO (AS-KO) and the Mineralocorticoid-Receptor KO (MR-KO) mice. We found the specific cells of the distal nephron in humans and mice that are chief sites of regulated K+ secretion have the highest Klotho protein expression along the nephron. WT mice fed K+-rich diets increased Klotho expression in these cells. AS-KO mice exhibit normal Klotho under basal conditions but could not upregulate Klotho in response to high-K+ intake in the K+-secreting cells. Similarly, MR-KO mice exhibit decreased Klotho protein expression. Together, i) Klotho is highly expressed in the key sites of regulated K+ secretion in humans and mice, ii) In mice, K+-rich diets increase Klotho expression specifically in the potassium secretory cells of the distal nephron, iii) Aldosterone signaling is required for Klotho response to high K+ intake.


Assuntos
Aldosterona , Glucuronidase , Proteínas Klotho , Camundongos Knockout , Potássio , Proteínas Klotho/metabolismo , Animais , Humanos , Camundongos , Potássio/metabolismo , Aldosterona/metabolismo , Glucuronidase/metabolismo , Glucuronidase/genética , Masculino , Néfrons/metabolismo , Potássio na Dieta/metabolismo , Potássio na Dieta/administração & dosagem , Feminino , Receptores de Mineralocorticoides/metabolismo , Receptores de Mineralocorticoides/genética , Camundongos Endogâmicos C57BL
19.
J Am Chem Soc ; 146(22): 15428-15437, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38795044

RESUMO

Chemical recycling to monomers (CRM) offers a promising closed-loop approach to transition from current linear plastic economy toward a more sustainable circular paradigm. Typically, this approach has focused on modulating the ceiling temperature (Tc) of monomers. Despite considerable advancements, polymers with low Tc often face challenges such as inadequate thermal stability, exemplified by poly(γ-butyrolactone) (PGBL) with a decomposition temperature of ∼200 °C. In contrast, floor temperature (Tf)-regulated polymers, particularly those synthesized via the ring-opening polymerization (ROP) of macrolactones, inherently exhibit enhanced thermodynamic stability as the temperature increases. However, the development of those Tf regulated chemically recyclable polymers remains relatively underexplored. In this context, by judicious design and efficient synthesis of a biobased macrocyclic diester monomer (HOD), we developed a type of Tf -regulated closed-loop chemically recyclable poly(ketal-ester) (PHOD). First, the entropy-driven ROP of HOD generated high-molar mass PHOD with exceptional thermal stability with a Td,5% reaching up to 353 °C. Notably, it maintains a high Td,5% of 345 °C even without removing the polymerization catalyst. This contrasts markedly with PGBL, which spontaneously depolymerizes back to the monomer above its Tc in the presence of catalyst. Second, PHOD displays outstanding closed-loop chemical recyclability at room temperature within just 1 min with tBuOK. Finally, copolymerization of pentadecanolide (PDL) with HOD generated high-performance copolymers (PHOD-co-PPDL) with tunable mechanical properties and chemical recyclability of both components.

20.
Brain Topogr ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822211

RESUMO

Primary angle-closure glaucoma (PACG) is a sight-threatening eye condition that leads to irreversible blindness. While past neuroimaging research has identified abnormal brain function in PACG patients, the relationship between PACG and alterations in brain functional networks has yet to be explored. This study seeks to examine the influence of PACG on brain networks, aiming to advance knowledge of its neurobiological processes for better diagnostic and therapeutic approaches utilizing graph theory analysis. A cohort of 44 primary angle-closure glaucoma (PACG) patients and 44 healthy controls participated in this study. Functional brain networks were constructed using fMRI data and the Automated Anatomical Labeling 90 template. Subsequently, graph theory analysis was employed to evaluate global metrics, nodal metrics, modular organization, and network-based statistics (NBS), enabling a comparative analysis between PACG patients and the control group. The analysis of global metrics, including small-worldness and network efficiency, did not exhibit significant differences between the two groups. However, PACG patients displayed elevated nodal metrics, such as centrality and efficiency, in the left frontal superior medial, right frontal superior medial, and right posterior central brain regions, along with reduced values in the right temporal superior gyrus region compared to healthy controls. Furthermore, Module 5 showed notable disparities in intra-module connectivity, while Module 1 demonstrated substantial differences in inter-module connectivity with both Module 7 and Module 8. Noteworthy, the NBS analysis unveiled a significantly altered network when comparing the PACG and healthy control groups. The study proposes that PACG patients demonstrate variations in nodal metrics and modularity within functional brain networks, particularly affecting the prefrontal, occipital, and temporal lobes, along with cerebellar regions. However, an analysis of global metrics suggests that the overall connectivity patterns of the entire brain network remain unaltered in PACG patients. These results have the potential to serve as early diagnostic and differential markers for PACG, and interventions focusing on brain regions with high degree centrality and nodal efficiency could aid in optimizing therapeutic approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...