Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37688132

RESUMO

In this study, graphene quantum dots (GQDs) with a diameter of ~3 nm were successfully synthesized and incorporated into a poly(ethylene terephthalate) (PET) matrix to fabricate PET/GQDs nanocomposites. The impact of GQDs on the crystallization and thermal stability of the PET/GQDs nanocomposites was investigated. It was observed that the addition of only 0.5 wt% GQDs into the nanocomposites resulted in a significant increase in the crystallization temperature (peak temperature) of PET, from 194.3 °C to 206.0 °C during the cooling scan process. This suggested that an optimal concentration of GQDs could function as a nucleating agent and effectively enhance the crystallization temperature of PET. The isothermal crystallization method was employed to analyze the crystallization kinetics of the PET/GQDs nanocomposites, and the data showed that 0.5 wt% GQDs significantly accelerated the crystallization rate. Furthermore, the incorporation of GQDs into the PET matrix imparted photoluminescent properties to the resulting PET/GQDs nanocomposites. The PET crystals with GQDs as crystal nuclei and the crazes caused by defects played a vital role in isolating and suppressing the concentration quenching of GQDs. This effect facilitated the detection of defects in PET.

2.
Polymers (Basel) ; 15(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36987216

RESUMO

Bismaleimide (BMI) resin-based structural adhesives have excellent heat resistance, with important applications demonstrated in the bonding of high-temperature BMI composites. In this paper, we report an epoxy-modified BMI structural adhesive with excellent properties for bonding BMI-based CFRP. We prepared the BMI adhesive using epoxy-modified BMI as the matrix and PEK-C and core-shell polymers as synergistic tougheners. We found that the epoxy resins improve the process and bonding properties of BMI resin but slightly reduce thermal stability. PEK-C and core-shell polymers synergistically improve the toughness and bonding performances of the modified BMI adhesive system and allow the maintenance of heat resistance. The optimized BMI adhesive exhibits excellent heat resistance, with a high glass transition temperature of 208.6 °C and a high thermal degradation temperature of 425.4 °C. Most importantly, the optimized BMI adhesive exhibits satisfactory intrinsic bonding and thermal stability. It has a high shear strength of 32.0 MPa at room temperature and up to 17.9 MPa at 200 °C. The BMI adhesive-bonded composite joint has a high shear strength of 38.6 and 17.3 MPa at room temperature and 200 °C, respectively, indicating effective bonding and excellent heat resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...