Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Eur Geriatr Med ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926333

RESUMO

PURPOSE: Generalized muscle weakness is the primary characteristic of sarcopenia. Handgrip strength (HGS) is widely employed to detect muscle weakness. However, knee extension strength (KES) declines much earlier and more pronounced than HGS, and there is a stronger correlation between KES and functional performance. Therefore, KES may be a more appropriate proxy for identifying muscle weakness compared to HGS. The purpose of this review was to clarify the KES measurement towards a standardized approach and summarize the cut-off points for KES. METHODS: A literature search was conducted in Web of Science, PubMed, Elsevier, Scopus and Medline databased up to July 10th, 2023. RESULTS: A total of 12 articles were ultimately included in this review, which proposed various cut-off points for KES. Notably, these studies exhibited high heterogeneities, including diverse living settings for participants, KES measurement, methods for KES normalization, methodologies for determining cut-off points and study designs. CONCLUSIONS: No consensus on cut-off points for KES was reached due to the heterogeneities in KES measurement and normalized methods among studies. To enhance the comparability among studies and facilitate the sarcopenia screening framework, a standardized approach for KES measurement and KES normalization are needed. Regarding KES measurement, the hand-held dynamometer-based isometric KES is easy to access and ideally suited for both clinical and community settings, while isokinetic KES, representing the gold standard, is preferred for research settings. Additionally, it is suggested to normalize isometric KES to body weight (BW), while normalizing isokinetic KES to allometrically scaled BW.

2.
Inflammopharmacology ; 32(2): 975-989, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429613

RESUMO

Fibrosis is a prevailing pathology in chronic diseases and accounts for 45% of deaths in developed countries. This condition is primarily identified by the transformation of fibroblasts into myofibroblasts and the overproduction of extracellular matrix (ECM) by myofibroblasts. Pterostilbene (PTS) is a natural analogue of resveratrol and is most commonly found in blueberries. Research has shown that PTS exerts a wide range of pharmacological effects, such as antioxidant, anti-inflammatory, and anticancer effects. As a result, PTS has the potential to prevent and cure numerous diseases. Emerging evidence has indicated that PTS can alleviate myocardial fibrosis, renal fibrosis, pulmonary fibrosis, hepatic fibrosis, and colon fibrosis via the inhibition of inflammation, oxidative stress, and fibrogenesis effects in vivo and in vitro, and the potential mechanisms are linked to various pathways, including transforming growth factor-ß1 (TGF-ß1)/small mother against decapentaplegic proteins (Smads) signalling, the reactive oxygen species (ROS)-driven Pitx2c/mir-15b pathway, nuclear factor kappa B (NF-κB) signalling, Kelch-like epichlorohydrin-associated protein-1 (Keap-1)/NF-E2-related factor-2 (Nrf2) cascade, the NLR family pyridine structure domain 3 (NLRP3) pathway, the Janus kinase-2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway, and the Src/STAT3 pathway. In this review, we comprehensively summarize the antifibrotic effects of PTS both in vivo and in vitro and the pharmacological mechanisms, pharmacokinetics, and toxicology of PTS and provide insights into and strategies for exploring promising agents for the treatment of fibrosis.


Assuntos
Estresse Oxidativo , Fibrose Pulmonar , Humanos , Fibrose , Fibrose Pulmonar/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Cirrose Hepática/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38466194

RESUMO

OBJECTIVE: This study investigated the effect of neuromuscular electrical stimulation (NMES) on the frontal ankle motor control in individuals with chronic ankle instability (CAI) during drop-landing. DESIGN: This was a randomized, controlled, double-blind trial. Thirty-six individuals with CAI were randomly assigned to each group. Participants received 6-week NMES intervention and sham stimulation in the NMES and control groups, respectively. Data was collected at week0 and week6. A mixed-effects model and analysis of covariance were employed to investigate the between-group differences in continuous and discrete outcome variables at week6, with the outcome variables at week0 as covariates. RESULTS: Compared to control group, NMES group exhibited a 2.66° (2.45, 2.86) reduction in frontal ankle inversion angle, a 47.41°/s (-16.05, -78.77) decrease in peak ankle inversion angular velocity, and a 0.43 Nm/kg (0.18, 0.68) increase in peak ankle eversion moment during drop-landing at week6. CONCLUSION: Applying 6-week NMES to the fibularis longus resulted in decreased ankle inversion angle and ankle inversion angular velocity, and increased peak ankle eversion moment during drop-landing. Consequently, NMES could be considered an effective modality for individuals with CAI to enhance the frontal ankle movement patterns and overall ankle motor control.

4.
J Ginseng Res ; 48(2): 129-139, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465219

RESUMO

Liver diseases are a significant global health burden and are among the most common diseases. Ginssennoside Rg3 (Rg3), which is one of the most abundant ginsenosides, has been found to have significant preventive and therapeutic effects against various types of diseases with minimal side effects. Numerous studies have demonstrated the significant preventive and therapeutic effects of Rg3 on various liver diseases such as viral hepatitis, acute liver injury, nonalcoholic liver diseases (NAFLD), liver fibrosis and hepatocellular carcinoma (HCC). The underlying molecular mechanism behind these effects is attributed to apoptosis, autophagy, antioxidant, anti-inflammatory activities, and the regulation of multiple signaling pathways. This review provides a comprehensive description of the potential molecular mechanisms of Rg3 in the development of liver diseases. The article focuses on the regulation of apoptosis, oxidative stress, autophagy, inflammation, and other related factors. Additionally, the review discusses combination therapy and liver targeting strategy, which can accelerate the translation of Rg3 from bench to bedside. Overall, this article serves as a valuable reference for researchers and clinicians alike.

5.
Biomolecules ; 14(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540669

RESUMO

Browning of white adipose tissue (WAT) is a focus of research in type 2 diabetes mellitus (T2DM) and metabolism, which may be a potential molecular mechanism for high-intensity interval training (HIIT) to improve T2DM. In this study, male C57BL/6J wild-type mice were subjected to an 8-week HIIT regimen following T2DM induction through a high-fat diet (HFD) combined with streptozotocin (STZ) injection. We found that HIIT improved glucose metabolism, body weight, and fat mass in T2DM mice. HIIT also decreased adipocyte size and induced browning of WAT. Our data revealed a decrease in TNFα and an increase in IL-10 with HIIT, although the expression of chemokines MCP-1 and CXCL14 was increased. We observed increased pan-macrophage infiltration induced by HIIT, along with a simultaneous decrease in the expression of M1 macrophage markers (iNOS and CD11c) and an increase in M2 macrophage markers (Arg1 and CD206), suggesting that HIIT promotes M2 macrophage polarization. Additionally, HIIT upregulated the expression of Slit3 and neurotrophic factors (BDNF and NGF). The expression of the sympathetic marker tyrosine hydroxylase (TH) and the nerve growth marker GAP43 was also increased, demonstrating the promotion of sympathetic nerve growth and density by HIIT. Notably, we observed macrophages co-localizing with TH, and HIIT induced the accumulation of M2 macrophages around sympathetic nerves, suggesting a potential association between M2 macrophages and increased density of sympathetic nerves. In conclusion, HIIT induces adipose tissue browning and improves glucose metabolism in T2DM mice by enhancing M2 macrophage polarization and promoting sympathetic nerve growth and density.


Assuntos
Diabetes Mellitus Tipo 2 , Treinamento Intervalado de Alta Intensidade , Masculino , Animais , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Endogâmicos C57BL , Tecido Adiposo/metabolismo , Macrófagos/metabolismo , Tecido Adiposo Branco/metabolismo , Glucose/metabolismo , Proteínas de Membrana/metabolismo
6.
Int J Mol Med ; 53(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38362920

RESUMO

Due to molecular forces, biomacromolecules assemble into liquid condensates or solid aggregates, and their corresponding formation and dissolution processes are controlled. Protein homeostasis is disrupted by increasing age or environmental stress, leading to irreversible protein aggregation. Hypoxic pressure is an important factor in this process, and uncontrolled protein aggregation has been widely observed in hypoxia­related conditions such as neurodegenerative disease, cardiovascular disease, hypoxic brain injury and cancer. Biomolecular condensates are also high­order complexes assembled from macromolecules. Although they exist in different phase from protein aggregates, they are in dynamic balance under certain conditions, and their activation or assembly are considered as important regulatory processes in cell survival with hypoxic pressure. Therefore, a better understanding of the relationship between hypoxic stress, protein aggregation and biomolecular condensation will bring marked benefits in the clinical treatment of various diseases. The aim of the present review was to summarize the underlying mechanisms of aggregate assembly and dissolution induced by hypoxic conditions, and address recent breakthroughs in understanding the role of aggregates in hypoxic­related diseases, given the hypotheses that hypoxia induces macromolecular assemblage changes from a liquid to a solid phase, and that adenosine triphosphate depletion and ATP­driven inactivation of multiple protein chaperones play important roles among the process. Moreover, it is anticipated that an improved understanding of the adaptation in hypoxic environments could extend the overall survival of patients and provide new strategies for hypoxic­related diseases.


Assuntos
Doenças Cardiovasculares , Doenças Neurodegenerativas , Humanos , Agregados Proteicos , Hipóxia , Trifosfato de Adenosina
7.
Biomed Pharmacother ; 170: 116051, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154275

RESUMO

Diabetes mellitus is a widespread metabolic disorder with increasing incidence worldwide, posing a considerable threat to human health because of its complications. Therefore, cost-effective antidiabetic drugs with minimal side effects are urgently needed. Dioscin, a naturally occurring compound, helps to reduce the complications of diabetes mellitus by regulating glucose and lipid metabolism, protecting islet ß cells, improving insulin resistance, and inhibiting oxidative stress and inflammatory response. Plant-derived dioscin reduces the risk of toxicity and side effects associated with chemically synthesized drugs. It is a promising option for treating diabetes mellitus because of its preventive and therapeutic effects, which may be attributed to a variety of underlying mechanisms. However, data compiled by current studies are preliminary. Information about the molecular mechanism of dioscin remains limited, and no high-quality human experiments and clinical trials for testing its safety and efficacy have been conducted. As a resource for research in this area, this review is expected to provide a systematic framework for the application of dioscin in the treatment of diabetes mellitus and its complications.


Assuntos
Diabetes Mellitus Tipo 2 , Diosgenina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/efeitos adversos , Diosgenina/efeitos adversos
8.
Biochem Biophys Res Commun ; 689: 149216, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37976836

RESUMO

Natural killer cells (NKs) are lymphocytes of the innate immune system that quickly respond to viruses, infections, and tumors during their short cell life cycle. However, it was recently found that NKs undergo quantitative, distributional, structural, and functional phenotypic changes during aging that suppress immune responses, which is known as immunosenescence. The aging host environment, cytokine regulation, cytomegalovirus status, and hypothalamic‒pituitary‒adrenal axis have significant effects on NK function. Different lifestyle management interventions modulate the number and cytotoxic activity of NKs, which are essential for rebuilding the immune barrier against pathogens in elderly individuals. Based on recent studies, we review the phenotypic changes of and potential threats of NKs during aging and explore the underlying mechanisms. By summarizing the effects of lifestyle management on NKs and their application prospects, we aim to provide evidence for enhancing immune system function against immune diseases in elderly individuals.


Assuntos
Imunossenescência , Humanos , Idoso , Imunossenescência/fisiologia , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Células Matadoras Naturais , Estilo de Vida
9.
Int J Mol Sci ; 24(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37628988

RESUMO

Melanin produced by melanocytes protects our skin against ultraviolet (UV) radiation-induced cell damage and oxidative stress. Melanin overproduction by hyperactivated melanocytes is the direct cause of skin hyperpigmentary disorders, such as freckles and melasma. Exploring natural whitening agents without the concern of toxicity has been highly desired. In this study, we focused on a Bifidobacterium longum strain, ZJ1, isolated from a Chinese centenarian, and we evaluated the anti-melanogenic activity of the distinctive extracts of ZJ1. Our results demonstrated that whole lysate (WL) and bacterial lysate (BL) of ZJ1 ferments efficiently reduce α-melanocyte-stimulating hormone (α-MSH)-induced melanin production in B16-F10 cells as well as the melanin content in zebrafish embryos. BL and WL downregulate melanogenesis-related gene expression and indirectly inhibit intracellular tyrosinase activity. Furthermore, they both showed antioxidant activity in a menadione-induced zebrafish embryo model. Our results suggest that ZJ1 fermentation lysates have application potential as therapeutic reagents for hyperpigmentary disorders and whitening agents for cosmetics.


Assuntos
Antioxidantes , Bifidobacterium longum , Clareadores , Hiperpigmentação , Melaninas , Animais , Humanos , Antioxidantes/farmacologia , Bifidobacterium longum/isolamento & purificação , Bifidobacterium longum/metabolismo , Centenários , População do Leste Asiático , Hiperpigmentação/tratamento farmacológico , Hiperpigmentação/metabolismo , Melaninas/metabolismo , Peixe-Zebra , Idoso de 80 Anos ou mais
10.
Front Physiol ; 14: 1189528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485056

RESUMO

Background: Adipose tissue pathology plays a crucial role in the pathogenesis of type 2 diabetes mellitus. Understanding the impact of exercise training on adipose tissue adaptation is of paramount importance in enhancing metabolic health. In this study, we aimed to investigate the effects of various exercise modalities on three distinct adipose tissue depots, namely, interscapular brown adipose tissue (iBAT), subcutaneous white adipose tissue (sWAT), and epididymal white adipose tissue (eWAT), in a murine model of diabetes. Methods: Male C57BL/6J mice received a 12-week high-fat diet and a single injection of streptozotocin, followed by an 8-week exercise intervention. The exercise intervention included swimming, resistance training, aerobic exercise, and high-intensity interval training (HIIT). Results: We found that exercise training reduced body weight and body fat percentage, diminished adipocyte size and increased the expression of mitochondria-related genes (PGC1, COX4, and COX8B) in three adipose tissue depots. The effects of exercise on inflammatory status include a reduction in crown-like structures and the expression of inflammatory factors, mainly in eWAT. Besides, exercise only induces the browning of sWAT, which may be related to the expression of the sympathetic marker tyrosine hydroxylase. Among the four forms of exercise, HIIT was the most effective in reducing body fat percentage, increasing muscle mass and reducing eWAT adipocyte size. The expression of oxidative phosphorylation and thermogenesis-related genes in sWAT and eWAT was highest in the HIIT group. Conclusion: When targeting adipose tissue to improve diabetes, HIIT may offer superior benefits and thus represents a more advantageous choice.

11.
Biomed Pharmacother ; 165: 115191, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37487440

RESUMO

ß-hydroxybutyrate (ß-HB), the most abundant ketone body, is produced primarily in the liver and acts as a substitute energy fuel to provide energy to extrahepatic tissues in the event of hypoglycemia or glycogen depletion. We now have an improved understanding of ß-HB as a signal molecule and epigenetic regulatory factor as a result of intensive research over the last ten years. Because ß-HB regulates various physiological and pathological processes, it may have a potential role in the treatment of metabolic diseases. The liver is the most significant metabolic organ, and the part that ß-HB plays in liver disorders is receiving increasing attention. In this review, we summarize the therapeutic effects of ß-HB on liver diseases and its underlying mechanisms of action. Moreover, we explore the prospects of exogenous supplements and endogenous ketosis including fasting, caloric restriction (CR), ketogenic diet (KD), and exercise as adjuvant nutritional therapies to protect the liver from damage and provide insights and strategies for exploring the treatment of various liver diseases.


Assuntos
Dieta Cetogênica , Cetose , Hepatopatias , Humanos , Ácido 3-Hidroxibutírico/metabolismo , Corpos Cetônicos/metabolismo , Hepatopatias/tratamento farmacológico
12.
Life Sci ; 324: 121740, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37120014

RESUMO

AIMS: Previous studies showed that high-intensity interval training (HIIT) improved fasting blood glucose and insulin resistance in type 2 diabetes mellitus (T2DM) mice. However, the effect of HIIT on the kidneys of mice with T2DM has not been examined. This study aimed to investigate the impact of HIIT on the kidneys of T2DM mice. MATERIALS AND METHODS: T2DM mice were induced with a high-fat diet (HFD) and one-time 100 mg/kg streptozotocin intraperitoneal injection, and then T2DM mice were treated with 8 weeks of HIIT. Renal function and glycogen deposition were observed by serum creatinine levels and PAS staining, respectively. Sirius red staining, hematoxylin-eosin staining, and Oil red O staining were used to detect fibrosis and lipid deposition. Western blotting was performed to detect the protein levels. KEY FINDINGS: HIIT significantly ameliorated the body composition, fasting blood glucose, and serum insulin of the T2DM mice. HIIT also improved glucose tolerance, insulin tolerance, and renal lipid deposition of T2DM mice. However, we found that HIIT increased serum creatinine and glycogen accumulation in the kidneys of T2DM mice. Western blot analysis showed that the PI3K/AKT/mTOR signaling pathway was activated after HIIT. The expression of fibrosis-related proteins (TGF-ß1, CTGF, collagen-III, α-SMA) increased, while the expression of klotho (sklotho) and MMP13 decreased in the kidneys of HIIT mice. SIGNIFICANCE: This study concluded that HIIT induced renal injury and fibrosis, although it also improved glucose homeostasis in T2DM mice. The current study reminds us that patients with T2DM should be cautious when participating in HIIT.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Treinamento Intervalado de Alta Intensidade , Insulinas , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Glicemia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/terapia , Creatinina , Rim/metabolismo , Fibrose , Glicogênio , Lipídeos
13.
Cell Mol Biol Lett ; 28(1): 27, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016287

RESUMO

BACKGROUND: Innate immune responses play essential roles in skeletal muscle recovery after injury. Programmed cell death protein 1 (PD-1) contributes to skeletal muscle regeneration by promoting macrophage proinflammatory to anti-inflammatory phenotype transition. Interferon (IFN)-γ induces proinflammatory macrophages that appear to hinder myogenesis in vitro. Therefore, we tested the hypothesis that blocking IFN-γ in PD-1 knockout mice may dampen inflammation and promote skeletal muscle regeneration via regulating the macrophage phenotype and neutrophils. METHODS: Anti-IFN-γ antibody was administered in PD-1 knockout mice, and cardiotoxin (CTX) injection was performed to induce acute skeletal muscle injury. Hematoxylin and eosin (HE) staining was used to view morphological changes of injured and regenerated skeletal muscle. Masson's trichrome staining was used to assess the degree of fibrosis. Gene expressions of proinflammatory and anti-inflammatory factors, fibrosis-related factors, and myogenic regulator factors were determined by real-time polymerase chain reaction (PCR). Changes in macrophage phenotype were examined by western blot and real-time PCR. Immunofluorescence was used to detect the accumulation of proinflammatory macrophages, anti-inflammatory macrophages, and neutrophils. RESULTS: IFN-γ blockade in PD-1 knockout mice did not alleviate skeletal muscle damage or improve regeneration following acute cardiotoxin-induced injury. Instead, it exacerbated skeletal muscle inflammation and fibrosis, and impaired regeneration via inhibiting macrophage accumulation, blocking macrophage proinflammatory to anti-inflammatory transition, and enhancing infiltration of neutrophils. CONCLUSION: IFN-γ is crucial for efficient skeletal muscle regeneration in the absence of PD-1.


Assuntos
Cardiotoxinas , Receptor de Morte Celular Programada 1 , Animais , Camundongos , Cardiotoxinas/farmacologia , Fibrose , Inflamação/metabolismo , Interferon gama/metabolismo , Camundongos Knockout , Músculo Esquelético/metabolismo , Receptor de Morte Celular Programada 1/metabolismo
14.
Microb Cell Fact ; 22(1): 67, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041591

RESUMO

BACKGROUND: Natural killer (NK) cell-based immunotherapies have demonstrated substantial potential for the treatment of hematologic malignancies. However, its application is limited due to the difficulty in the production of a large number of NK cells in vitro and the insufficient therapeutic efficacy against solid tumors in vivo. Engineered antibodies or fusion proteins targeting activating receptors and costimulatory molecules of NK cells have been developed to encounter these problems. They are mostly produced in mammalian cells with high cost and long processing times. Yeast systems, such as Komagataella phaffii, present a convenient manipulation of microbial systems with the key advantages of improved folding machinery and low cost. RESULTS: In this study, we designed an antibody fusion protein scFvCD16A-sc4-1BBL, composed of the single chain variant fragment (scFv) of anti-CD16A antibody and the three extracellular domains (ECDs) of human 4-1BBL in a single-chain format (sc) with the GS linker, aiming to boost NK cell proliferation and activation. This protein complex was produced in the K. phaffii X33 system and purified by affinity chromatography and size exclusion chromatography. The scFvCD16A-sc4-1BBL complex showed comparable binding abilities to its two targets human CD16A and 4-1BB as its two parental moieties (scFvCD16A and monomer ECD (mn)4-1BBL). scFvCD16A-sc4-1BBL specifically stimulated the expansion of peripheral blood mononuclear cell (PBMC)-derived NK cells in vitro. Furthermore, in the ovarian cancer xenograft mouse model, adoptive NK cell infusion combined with intraperitoneal (i.p) injection of scFvCD16A-sc4-1BBL further reduced the tumor burden and prolonged the survival time of mice. CONCLUSION: Our studies demonstrate the feasibility of the expression of the antibody fusion protein scFvCD16A-sc4-1BBL in K. phaffii with favourable properties. scFvCD16A-sc4-1BBL stimulates PBMC-derived NK cell expansion in vitro and improves the antitumor activity of adoptively transferred NK cells in a murine model of ovarian cancer and may serve as a synergistic drug for NK immunotherapy in future research and applications.


Assuntos
Leucócitos Mononucleares , Neoplasias Ovarianas , Feminino , Humanos , Animais , Camundongos , Ligantes , Ligante 4-1BB/uso terapêutico , Células Matadoras Naturais , Anticorpos , Neoplasias Ovarianas/tratamento farmacológico , Mamíferos
15.
Sheng Li Xue Bao ; 75(2): 291-302, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37089103

RESUMO

Branched chain amino acids, as essential amino acids, can be used to synthesize nitrogen-containing compounds and also act as signal molecules to regulate substance metabolism. Studies have shown that the elevated level of branched chain amino acids is closely related to insulin resistance and type 2 diabetes. It can affect insulin signal transduction by activating mammalian target of rapamycin (mTOR) signal pathway, and regulate insulin resistance by damaging lipid metabolism and affecting mitochondrial function. In addition, abnormal catabolism of branched amino acids can lead to the accumulation of metabolic intermediates, such as branched chain α-keto acids, 3-hydroxyisobutyrate and ß-aminoisobutyric acid. Branched chain α-keto acids and 3-hydroxyisobutyrate can induce insulin resistance by affecting insulin signaling pathway and damaging lipid metabolism. ß-aminoisobutyric acid can improve insulin resistance by reducing lipid accumulation and inflammatory reaction and enhancing fatty acid oxidation. This paper systematically reviewed the regulatory effects and mechanisms of branched chain amino acids and their metabolic intermediates on insulin resistance, which will provide a new direction for the prevention and treatment of insulin resistance and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Aminoácidos de Cadeia Ramificada/metabolismo , Resistência à Insulina/fisiologia , Insulina/farmacologia , Cetoácidos/metabolismo
16.
Pharmacol Res ; 188: 106657, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36682437

RESUMO

Fibrosis is the end-stage pathological manifestation of many chronic diseases. Infiltration of inflammatory cells and activation of myofibroblasts are the most prominent features of fibrosis, with excessive deposition of extracellular matrix (ECM) in tissues leading to organ tissue damage, which eventually progresses to organ failure and leads to high mortality rates. At present, a large number of studies have been conducted on tissue fibrosis, and the pathological mechanism of fibrosis development has generally been recognized. However, the prevention and treatment of fibrosis is still an unsolved problem, and a shortage of drugs that can be used in the clinic persists. Astaxanthin (ASTX), a carotenoid, is widely known for its strong antioxidant capacity. ASTX also has other biological properties, such as anti-inflammatory, antiaging and anticancer properties. Recently, many papers have reported that ASTX inhibits the occurrence and development of fibrosis by regulating signaling molecular pathways, such as transforming growth factor-ß/small mother against decapentaplegic protein (TGF-ß1/Smad), sirtuin 1 (SIRT1), nuclear factor kappa-B (NF-κB), microRNA, nuclear factor-E2-related factor 2/antioxidant response element (Nrf 2/ARE) and reactive oxygen species (ROS) pathways. By targeting these molecular signaling pathways, ASTX may become a potential drug for the treatment of fibrotic diseases. In this review, we summarize the therapeutic effects of ASTX on organ fibrosis and its underlying mechanisms of action. By reviewing the results from in vitro and in vivo studies, we analyzed the therapeutic prospects of ASTX for various fibrotic diseases and provided insights into and strategies for exploring new drugs for the treatment of fibrosis.


Assuntos
Fator de Crescimento Transformador beta1 , Xantofilas , Humanos , Fibrose , Xantofilas/farmacologia , Xantofilas/uso terapêutico , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Matriz Extracelular/metabolismo
17.
Chin J Integr Med ; 29(4): 368-376, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34921649

RESUMO

Lower limb osteoarthritis (OA) is a chronic, multifactorial disease characterized by impaired physical function, chronic pain, compromised psychological health and decreased social functioning. Chronic inflammation plays a critical role in the pathophysiology of OA. Tai Chi is a type of classical mind-body exercise derived from ancient Chinese martial arts. Evidence supports that Tai Chi has significant benefits for relieving lower limb OA symptoms. Using a biopsychosocial framework, this review aims to elucidate the beneficial effects of Tai Chi in lower limb OA and disentangle its potential mechanisms from the perspective of biology, psychology, and social factors. Complex biomechanical, biochemical, neurological, psychological, and social mechanisms, including strengthening of muscles, proprioception improvement, joint mechanical stress reduction, change of brain activation and sensitization, attenuation of inflammation, emotion modulation and social support, are discussed.


Assuntos
Osteoartrite , Tai Chi Chuan , Humanos , Osteoartrite/terapia , Terapia por Exercício , Extremidade Inferior , Doença Crônica , Inflamação
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121930, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36191437

RESUMO

Pesticide residues in water is one of the most serious problems in developing countries. Surface enhanced Raman spectroscopy (SERS) is widely used in the detection and monitoring of pesticide and other trace compounds because of its low limits of detection (LODs). However, different SERS substrate synthesis methods have different economic benefits and environmental impacts. In this paper, a flexible AuNPs@CDA SERS substrate was fabricated by the gold nanoparticles (AuNPs) and the biomass-based cellulose diacetate (CDA), which had stable test performance and considerable LODs. The substrates were economically viable and environment friendly. The characterization analysis of the substrate allows us to flexibly select different test methods (drop-test or enrichment-test) as coping strategy in different situation. The results showed that the LODs of thiram pesticide in water by enrichment-test could reach 10-7 g/mL, and had a good linear relationship in the concentration range of 10-7-10-6 g/mL. This strategy can realize the rapid and effective detection and monitoring of thiram pesticide in water.


Assuntos
Nanopartículas Metálicas , Praguicidas , Tiram/análise , Ouro/química , Praguicidas/análise , Nanopartículas Metálicas/química , Água , Análise Espectral Raman/métodos
19.
Sheng Li Xue Bao ; 74(5): 805-815, 2022 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-36319103

RESUMO

Skeletal muscle is the largest organ of human body, which completes 80%-90% of glucose intake stimulated by insulin, and is closely related to the occurrence and development of insulin resistance (IR). Skeletal muscle is one of the main places of lipid metabolism, and lipid metabolites participate in skeletal muscle metabolism as signal molecules. Fatty acids regulate skeletal muscle insulin sensitivity through insulin signaling pathway, inflammatory response and mitochondrial function. Saturated fatty acids (SFAs) induce insulin resistance by impairing insulin signal transduction, inducing mitochondrial dysfunction and inflammatory response, while unsaturated fatty acids reverse the adverse effects of SFAs and ameliorate IR by enhancing insulin signal transduction and anti-inflammatory effect. In addition, disorders of lipid metabolism in skeletal muscle cause accumulation of harmful metabolic intermediates, such as diacylglycerol, ceramide and long-chain acyl-coenzyme A, and induce IR by directly or indirectly damaging insulin signaling pathway. This article reviews the research progress of lipid metabolic intermediates regulating insulin sensitivity in skeletal muscle, which will help to better understand the pathogenesis of diabetes.


Assuntos
Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos , Ácidos Graxos/metabolismo
20.
Foods ; 11(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36076835

RESUMO

Black tea leaves were pulverized at an organ-scale (~mm), tissue-scale (500−100 µm) and cell-scale (<50−10 µm) to investigate their physicochemical and functional properties. The results showed that cell-scale powders exhibited a bright brown color compared with organ- or tissue-scale powders with the highest total color difference (∆E) of 39.63 and an L value of 55.78. There was no obvious difference in the oil-holding capacity (OHC) of the organ- and tissue-scale powders (3.71−3.74 g/g), while the OHC increased significantly to 4.08 g/g in cell-scale powders. The soluble dietary fiber (SDF) content of cell-scale powders increased remarkably to 10.41%, indicating a potential application as a high-SDF food. Further, cell-scale pulverization of black tea enhanced its DPPH scavenging activity and ferric-ion-reducing antioxidant power (FRAP). However, the polyphenol content (13.18−13.88%) and the protein content (27.63−28.09%), as well as the Pb2+ adsorption capacity (1.97−1.99 mg/g) were not affected by multiscale pulverizations. The mean particle size (D50) correlated linearly with tap density (TD), color parameters of L and b, SDF content, DPPH scavenging activity and FRAP. The results indicate that black tea powders pulverized at a cell-scale can be used as a soluble fiber-rich functional food additive with a bright color, enhanced OHC and antioxidant capacity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...