Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Affect Disord ; 355: 239-246, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552917

RESUMO

BACKGROUND: Systemic immune-inflammatory index (SII) has been recognized as a novel inflammatory indicator in numerous diseases. It remains unknown how SII affects all-cause mortality among patients with osteoarthritis (OA). In this prospective cohort study, we intended to examine the relationship of SII with all-cause mortality among OA populations and assess the interaction between depression and SII. METHODS: Data was collected from National Health and Nutrition Examination Survey (NHANES) in 2005-2018. The National Death Index (NDI) provided vital status records. Multivariable Cox regression analyses with cubic spines were applied to estimate the association between SII and all-cause and CVD mortality. Stratified analysis and interaction tests assessed the interaction of SII and depression on all-cause mortality. RESULTS: In total 3174 OA adults were included. The lowest quartile Q1 (HR:1.44, 95%CI:1.02-2.04) and highest quartile Q4 (HR:1.44, 95%CI:1.02-2.04) of SII presented a higher risk of death compared with those in second quartile Q2 (Ref.) and third quartile Q3 (HR:1.23, 95%CI:0.89-1.68. Restricted cubic splines analysis revealed a U-shaped association of SII with all-cause mortality, the inflection points were 412.93 × 109/L. The interaction test observed a more significant relationship of SII with all-cause mortality in depression patients than in non-depression patients, indicating that depression can modify this association. LIMITATIONS: First, the observational study design failed to make causal inferences. Second, the baseline SII cannot reflect the long-term level of inflammation. Finally, there may be potential bias. CONCLUSION: SII was U-shaped associated with all-cause mortality in OA patients, and this association was significantly heightened by depression.


Assuntos
Depressão , Osteoartrite , Adulto , Humanos , Inquéritos Nutricionais , Estudos Prospectivos , Inflamação
2.
Environ Res ; 251(Pt 1): 118574, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452911

RESUMO

Tire wear particles (TWPs), as predominant microplastics (MPs) in road runoff, can be captured and retained by bioretention systems (BRS). This study aimed to investigate the effect of TWPs accumulation on nitrogen processes, focusing on soil characteristics, microbial community, and functional genes. Two groups of lab-scale bioretention columns containing TWPs (0 and 100 mg g-1) were established. The removal efficiencies of NH4+-N and TN in BRS significantly decreased by 7.60%-24.79% and 1.98%-11.09%, respectively, during the 101 days of TWPs exposure. Interestingly, the emission fluxes of N2O and CO2 were significantly decreased, while the emission flux of CH4 was substantially increased. Furthermore, prolonged TWPs exposure significantly influenced the contents of soil organic matter (increased by 27.07%) and NH4+-N (decreased by 42.15%) in the planting layer. TWPs exposure also significantly increased dehydrogenase activity and substrate-induced respiration rate, thereby promoting microbial metabolism. Microbial sequencing results revealed that TWPs decreased the relative abundance of nitrifying bacteria (Nitrospira and Nitrosomonas) and denitrifying bacteria (Dechloromonas and Thauera), reducing the nitrification rate by 42.24%. PICRUSt2 analysis further indicated that TWPs changed the relative abundance of functional genes related to nitrogen and enzyme-coding genes.


Assuntos
Gases de Efeito Estufa , Nitrogênio , Microbiologia do Solo , Nitrogênio/análise , Nitrogênio/metabolismo , Gases de Efeito Estufa/análise , Solo/química , Microbiota , Poluentes do Solo/análise , Bactérias/genética , Bactérias/metabolismo
3.
Int J Biol Macromol ; 253(Pt 7): 127418, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37848112

RESUMO

Adenine base editors, enabling targeted A-to-G conversion in genomic DNA, have enormous potential in therapeutic applications. However, the currently used adenine base editors are limited by wide editing windows and off-target effects in genetic therapy. Here, we report human e18 protein, a RING type E3 ubiquitin ligase variant, fusing with adenine base editors can significantly improve the preciseness and narrow the editing windows compared with ABEmax and ABE8e by diminishing the abundance of base editor protein. As a proof of concept, ABEmax-e18 and ABE8e-e18 dramatically decrease Cas9-dependent and Cas9-independent off-target effects than traditional adenine base editors. Moreover, we utilized ABEmax-e18 to establish syndactyly mouse models and achieve accurate base conversion at human PCSK9 locus in HepG2 cells which exhibited its potential in genetic therapy. Furthermore, a truncated version of base editors-RING (ABEmax-RING or AncBE4max-RING), which fusing the 63 amino acids of e18 protein RING domain to the C terminal of ABEmax or AncBE4max, exhibited similar effect compared to ABEmax-e18 or AncBE4max-e18.In summary, the e18 or RING protein fused with base editors strengthens the precise toolbox in gene modification and maybe works well with various base editing tools with a more applicable to precise genetic therapies in the future.


Assuntos
Sistemas CRISPR-Cas , Pró-Proteína Convertase 9 , Animais , Camundongos , Humanos , Pró-Proteína Convertase 9/metabolismo , Sistemas CRISPR-Cas/genética , Adenina/metabolismo , Edição de Genes , DNA/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Gene ; 883: 147684, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37536398

RESUMO

Dominant genetic variants in the mitofusin 2 (MFN2) gene lead to Charcot-Marie-Tooth type 2A (CMT2A), a neurodegenerative disease caused by genetic defects that directly damage axons. In this study, we reported a proband with a pathogenic variant in the GTPase domain of MFN2, c.494A > G (p.His165Arg). To date, at least 184 distinct MFN2 variants identified in 944 independent probands have been reported in 131 references. However, the field of medical genetics has long been challenged by how genetic variation in the MFN2 gene is associated with disease phenotypes. Here, by collating the MFN2 variant data and patient clinical information from Leiden Open Variant Database 3.0, NCBI clinvar database, and available related references in PubMed, we determined the mutation frequency, age of onset, sex ratio, and geographical distribution. Furthermore, the results of an analysis examining the relationship between variants and phenotypes from multiple genetic perspectives indicated that insertion and deletions (indels), copy number variants (CNVs), duplication variants, and nonsense mutations in single nucleotide variants (SNVs) tend to be pathogenic, and the results emphasized the importance of the GTPase domain to the structure and function of MFN2. Overall, three reliable classification methods of MFN2 genotype-phenotype associations provide insights into the prediction of CMT2A disease severity. Of course, there are still many MFN2 variants that have not been given clear clinical significance, which requires clinicians to make more accurate clinical diagnoses.


Assuntos
Doença de Charcot-Marie-Tooth , Doenças Neurodegenerativas , Humanos , Mutação , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , GTP Fosfo-Hidrolases/genética , Estudos de Associação Genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/química
5.
Front Cell Infect Microbiol ; 12: 935068, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873154

RESUMO

Background: A diversity of microorganisms is associated with human health and exists in a state of dynamic equilibrium. This diversity has direct implications for the assessment of susceptibility to infectious diseases, especially human papillomavirus (HPV) infection. Methods: Here, we investigated the relationships between HPV infection and vaginal, cervical, and gut microbiota composition and assessed the levels of genital immune mediators. We selected a multiethnic area in Yunnan Province, China, to collect samples from healthy women of childbearing age. A total of 82 healthy women of childbearing age were included in this study. Vaginal, cervical, and rectal swabs were collected to analyze the microbial community, and cytokines were analyzed in some samples. Findings: Different proportions and types of HPV infection were detected in cervical (44%), vaginal (18%), and rectal (18%) swabs. HPV detected in cervical swabs was generally a high-risk type, while low-risk HPV types were primarily detected in vaginal and rectal swabs. There were some differences in this proportion as well as in the microbial community composition among different ethnic groups. Rectal samples exhibited the highest diversity index, while vaginal samples displayed the lowest diversity index. Lactobacillus dominated most of the vaginal samples, was decreased in HPV-positive samples, and differed among different ethnic groups. However, the sequence proportion of Lactobacillus in the cervix exhibited the opposite trend in those affected by HPV infection. The dynamic balance between the potential pathogens Gardnerella and Lactobacillus determines the health of the female genital system. Interpretation: This study constitutes the first step toward personalized medicine for women's reproductive health, wherein differences between the genital microbiomes of individuals would be considered in risk assessment and for subsequent disease diagnosis and treatment.


Assuntos
Microbiota , Infecções por Papillomavirus , China/epidemiologia , Etnicidade , Feminino , Humanos , Lactobacillus , RNA Ribossômico 16S , Vagina
6.
Front Vet Sci ; 9: 904667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711808

RESUMO

A fruit juice production byproduct, Aronia melanocarpa pomace (AMP) is rich in natural polyphenol antioxidant components. The objectives of this study were to study the effects of dietary AMP supplementation on the feeding outcome and intestinal barrier function of pigs. In total, 27 growing pigs (Duroc × Landrace × Yorkshire, ~60 days, average weight of 27.77 ± 2.87 kg, males and females included at random) were randomly allotted to 3 treatment groups, with 3 repetitions per group and 3 pigs per repetition. At the experiment completion, 2 pigs (close to the average body weight of all experimental pigs) per replicate were slaughtered. The control group (CON group) was fed a basic diet, and the experimental groups were fed 4% (4% AMP group) and 8% (8% AMP group) AMP in the basic diet. These pigs were prefed for 3 days, and the formal experiments were performed for 7 weeks. The results showed that compared with the CON diet, the 4% AMP supplementation significantly increased the average daily gain of pigs (P < 0.05). Regarding intestinal development, 4% AMP significantly increased the jejunal villus height/crypt depth ratio (P < 0.05), and different AMP levels had no significant effect on the pig cecum morphology. Different AMP levels significantly decreased the relative abundance of Proteobacteria (P < 0.05). Regarding other microbial genera, 4% AMP supplementation significantly increased the levels of Lachnospira, Solobacterium, Romboutsia and other beneficial microorganisms (P < 0.05). Different AMP levels significantly decreased the relative abundances of the opportunistic pathogens Escherichia-Shigella and Pseudoscardovia (P < 0.05) and increased the contents of acetic acid and butyric acid in the pig cecal contents (P < 0.05). Compared with the CON treatment, 4% AMP supplementation significantly downregulated the jejunal gene expression of porcine proinflammatory factors (IL-1ß, IL-6, IL-8 and TNF-α) and significantly upregulated the jejunal gene expression of ZO-1, Occludin and Claudin-1 (P < 0.05). In conclusion, 4% AMP supplementation in feed is beneficial to overall pig health and growth.

7.
Plant Biotechnol J ; 20(10): 1983-1995, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35767383

RESUMO

Functional genomics, synthetic biology and metabolic engineering require efficient tools to deliver long DNA fragments or multiple gene constructs. Although numerous DNA assembly methods exist, most are complicated, time-consuming and expensive. Here, we developed a simple and flexible strategy, unique nucleotide sequence-guided nicking endonuclease (UNiE)-mediated DNA assembly (UNiEDA), for efficient cloning of long DNAs and multigene stacking. In this system, a set of unique 15-nt 3' single-strand overhangs were designed and produced by nicking endonucleases (nickases) in vectors and insert sequences. We introduced UNiEDA into our modified Cre/loxP recombination-mediated TransGene Stacking II (TGSII) system to generate an improved multigene stacking system we call TGSII-UNiE. Using TGSII-UNiE, we achieved efficient cloning of long DNA fragments of different sizes and assembly of multiple gene cassettes. Finally, we engineered and validated the biosynthesis of betanin in wild tobacco (Nicotiana benthamiana) leaves and transgenic rice (Oryza sativa) using multigene stacking constructs based on TGSII-UNiE. In conclusion, UNiEDA is an efficient, convenient and low-cost method for DNA cloning and multigene stacking, and the TGSII-UNiE system has important application prospects for plant functional genomics, genetic engineering and synthetic biology research.


Assuntos
Betacianinas , Vetores Genéticos , Clonagem Molecular , DNA , Desoxirribonuclease I/genética , Endonucleases/genética , Vetores Genéticos/genética , Integrases , Recombinação Genética/genética , Nicotiana/genética
8.
ACS Infect Dis ; 8(6): 1179-1190, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35559610

RESUMO

Porcine epidemic viruses, such as pseudorabies virus (PRV) and porcine circovirus 2 (PCV2), are among the most economically damaging pathogens affecting the swine industry. Importantly, previous studies have shown that cases of human infection with PRV occur frequently, indicating the considerable risk of PRV transmission from pigs to humans. Zinc finger CCCH-type containing 11A (ZC3H11A) has been confirmed to play a crucial role in maintaining the nuclear export of mRNA under stress in humans, but its role in pigs remains unknown. In this study, we observed that ZC3H11A interacted with the transcription and export complex and played an important role in mRNA export. Specifically, we knocked out ZC3H11A in PK-15 cells with CRISPR/Cas9 and challenged them with PRV and PCV2. The results showed that the proliferation of the virus was significantly inhibited in ZC3H11A-/- cells, indicating that porcine ZC3H11A is indispensable for the proliferation of PRV and PCV2. Furthermore, our study demonstrated that the inactivation of ZC3H11A in host cells also inhibited the proliferation of PRV and PCV2. Taken together, the results of our study indicated that ZC3H11A is important for maintaining the export of mRNAs, which in turn facilitates the proliferation of PRV and PCV2, suggesting that it can be a potential target for producing antiviral pigs and drugs.


Assuntos
Circovirus , Herpesvirus Suídeo 1 , Animais , Proliferação de Células , Circovirus/genética , Herpesvirus Suídeo 1/genética , RNA Mensageiro/genética , Suínos
9.
Viruses ; 14(2)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216010

RESUMO

Pigs play an important role in agriculture and biomedicine. The globally developing swine industry must address the challenges presented by swine-origin viruses, including ASFV (African swine fever virus), PRRSV (porcine reproductive and respiratory syndrome virus), PEDV (porcine epidemic diarrhea virus), PRV (pseudorabies virus), CSFV (classical swine fever virus), TGEV (transmissible gastroenteritis virus), et al. Despite sustained efforts by many government authorities, these viruses are still widespread. Currently, gene-editing technology has been successfully used to generate antiviral pigs, which offers the possibility for increasing animal disease tolerance and improving animal economic traits in the future. Here, we summarized the current advance in knowledge regarding the host factors in virus infection and the current status of genetically modified pigs that are resistant to virus infection in the world. There has not been any report on PEDV-resistant pigs, ASFV-resistant pigs, and PRV-resistant pigs owing to the poor understanding of the key host factors in virus infection. Furthermore, we summarized the remaining problems in producing virus-resistant pigs, and proposed several potential methods to solve them. Using genome-wide CRISPR/Cas9 library screening to explore the key host receptors in virus infection may be a feasible method. At the same time, exploring the key amino acids of host factors in virus infection with library screening based on ABEs and CBEs (Bes) may provide creative insight into producing antiviral pigs in the future.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Clássica/genética , Herpesvirus Suídeo 1/genética , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Gastroenterite Transmissível/genética , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Suínos/virologia , Viroses/prevenção & controle
10.
Water Sci Technol ; 84(5): 1190-1205, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34534116

RESUMO

In this study, a new sulfidated nanoscale zero-valent iron (S-nZVI) supported on hydrogel (S-nZVI@H) was successfully synthesized for the removal of chromium (Cr) (VI) from groundwater. The surface morphology, dispersion phenomenon and functional groups of novel S-nZVI@H were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Box-Behnken design (BBD) optimization technology based on response surface methodology (RSM) is applied to demonstrate the influence of the interaction of S-nZVI@H dose, initial Cr(VI) concentration, contact time, and initial pH with the Cr(VI) removal efficiency. The analysis of variance results (F = 118.73, P < 0.0001, R2 = 0.9916) show that the quadratic polynomial model is significant enough to reflect the close relationship between the experimental and predicted values. The predicted optimum removal conditions are: S-nZVI@H dose 9.46 g/L, initial Cr(VI) concentration 30 mg/L, contact time 40.7 min, and initial pH 5.27, and the S-nZVI@H dose is the key factor affecting the removal of Cr(VI). The predicted value (99.76%) of Cr (VI) removal efficiency is in good agreement with the experimental value (97.75%), which verifies the validity of the quadratic polynomial model. This demonstrates that RSM with appropriate BBD can be utilized to optimize the design of experiments for removal of Cr(VI).


Assuntos
Ferro , Poluentes Químicos da Água , Adsorção , Cromo/análise , Hidrogéis , Poluentes Químicos da Água/análise
11.
Oncol Lett ; 20(6): 391, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33193851

RESUMO

Osteosarcoma is a common primary bone cancer that there are currently no effective treatment strategies for. Forkhead box M1 (FoxM1) is key in the development of osteosarcoma, and microRNA (miR)-216b serves an antitumor role by targeting FoxM1. Moreover, thiostrepton (TST), a natural thiazole antibiotic, induces antitumor effects and specifically targets FoxM1. Therefore, the present study investigated whether thiostrepton and miR-216b synergistically inhibited osteosarcoma cells by targeting FoxM1. The MTT assay, reverse transcription-quantitative PCR, a dual-luciferase reporter assay and flow cytometry were performed. Compared with the human osteoblast cell line hFOB1.19, miR-216b expression was significantly downregulated in the osteosarcoma cell lines U2OS, MG63 and Saos-2. By contrast, FoxM1 expression was significantly upregulated in osteosarcoma cell lines compared with the hFOB1.19 cell line. The results indicated that miR-216b targeted the 3'-untranslated region of FoxM1. Moreover, the results suggested that miR-216b cooperated with TST to decrease cell cytotoxicity and increase cell apoptosis. In addition, miR-216b cooperated with TST to increase Bax expression and decrease Bcl-2 expression. In conclusion, the combination of TST and miR-216b synergistically promoted osteosarcoma cell cytotoxicity and apoptosis by targeting FoxM1. Therefore, the present study suggested that the combination of TST and miR-216b may serve as a promising therapeutic strategy for osteosarcoma.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33204290

RESUMO

Osteoarthritis (OA) is currently the most common joint disorder worldwide. In last decades, herbal remedies have achieved a significant advancement in the treatment of OA. Duhuo Jisheng Decoction (DHJS), an herbal formula consisting of 15 medicinal herbs, has a long-time practice in OA therapy in China. However, its therapeutic mechanisms have not been comprehensively elucidated. In the present work, integrated network and experimental pharmacology were performed for investigating the therapeutic substances and mechanisms of DHJS. Based on network analysis, the contribution of each herb to OA therapy was evaluated. Furthermore, a series of potential targets and signaling pathways were enriched, which could be involved in the therapeutic effects and mechanisms of DHJS. Further experimental results indicated that DHJS attenuated TNFα, IL-6, MMP-1, MMP-9, MMP-13, and ADAMTs-5 expression, inhibited NF-κB and p38 MAPK signaling pathway, activated AMPK-SIRT1 signaling pathway, and suppressed chondrocyte apoptosis, which synergistically contributed to OA therapy. Our work demonstrated that DHJS could be very promising for OA therapy through synergistically acting on multitargets and multipathways.

13.
Exp Gerontol ; 119: 61-73, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30690066

RESUMO

AIM: Mitochondrial dysfunction during aging is a key factor that contributes to sarcopenia. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been increasingly recognized to regulate mitochondrial function. The present study aimed to investigate the role of Nrf2 in the development of frailty and sarcopenia during aging, and to demonstrate whether Nrf2 contributes to the maintenance of muscle mass and function by regulation of mitochondrial biogenesis and dynamics during the aging process. METHODS: Young (5-6 months), middle-aged (11-13 months), old (20-24 months) Nrf2-/- (knockout, KO) mice and age-matched wild-type (WT) C57/BL6 mice were used in this study. Physical function of the mice in the 6 groups was assessed by grip strength test, four paw inverted hanging test, rotarod analysis, open field analysis, and treadmill endurance test. Muscle mass was measured by cross-sectional area (CSA) of tibialis anterior muscles and gastrocnemius muscle weight. The frailty status of the 25 old WT mice and 23 old KO mice were assessed based on the mouse frailty phenotype assessment. Expression levels of genes involved in mitochondrial biogenesis (nuclear respiratory factor 1 (Nrf1), peroxisome proliferative activated receptor, gamma, coactivator 1 alpha (PGC-1α), mitochondrial transcription factor A (TFAM)) and mitochondrial dynamics (optic atrophy protein 1 (Opa1), mitofusin 1 (Mfn1), mitofusin 2 (Mfn2), and dynamin-related protein 1 (Drp1)) were measured in the skeletal muscle. SDH staining was performed and mitochondrial DNA (mtDNA) copy number was measured. Transmission electron microscopy was used to measure the mitochondria number and morphology. RESULTS: Physical function and muscle mass decreased during aging. The mRNA expression levels of Nrf2 decreased with increasing frailty phenotype scores in the old WT mice. There were minimal differences in the physical function and muscle mass between the WT and KO mice in the young groups, whereas Nrf2 deficiency caused a declined physical function and muscle mass in the middle-aged and old mice, and exacerbated frailty in the old mice. The decreases of the physical function and muscle mass were accompanied by the reduced expression levels of genes involved in mitochondrial biogenesis and dynamics, as well as a reduction of mitochondrial number, mitochondrial content, mtDNA copy number, and an impaired mitochondria morphology in the skeletal muscle. CONCLUSION: Nrf2 deficiency exacerbated frailty and sarcopenia during aging, at least partially by impairing skeletal muscle mitochondrial biogenesis and dynamics in an age-dependent manner.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Fator 2 Relacionado a NF-E2/deficiência , Sarcopenia/etiologia , Envelhecimento/genética , Animais , Modelos Animais de Doenças , Fragilidade/etiologia , Fragilidade/patologia , Fragilidade/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/patologia , Mitocôndrias Musculares/fisiologia , Dinâmica Mitocondrial , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/fisiologia , Biogênese de Organelas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sarcopenia/patologia , Sarcopenia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...